ATI X1300 User Guide - Page 120

Alpha Blending, Alternate Frame Rendering, Adaptive Anti-aliasing

Page 120 highlights

112 surfaces, allowing game programmers to include more texture and lighting details without affecting performance. Adaptive Anti-aliasing Adaptive anti-aliasing is a technique that applies a combination of multisampling (MSAA) and super-sampling (SSAA) on 3D objects to improve edge smoothness and fine detail. Multi-sampling works best on smoothing the edges of solid polygons, but cannot effectively smooth edges within polygons which are partially transparent. Super-sampling is able to more accurately calculate color values adjacent to transparent pixel shader values within polygons with partially transparent textures, but is not applied universally since it is more processor-intensive. Adaptive anti-aliasing works by using super-sampled anti-aliasing on transparent textures, and multi-sampled anti-aliasing on all other textures. This delivers exceptional levels of image quality, while maintaining performance. AGP The Accelerated Graphics Port (AGP) is a slot on the computer motherboard designed specifically for 3D graphics cards. AGP runs 3D images much more smoothly and quickly than was previously possible with PCI video cards; AGP runs at several times the bus speed of PCI and employs sideband addressing, so multiple data transfers between the graphics processor and the computer can take place concurrently. AGP is currently being phased out in favour of PCI Express® (PCIe™) on PC systems. Alpha Blending Alpha blending is used in 3D graphics to create transparent or opaque effects for surfaces such as glass and water. Alpha is a transparency value, so the lower the value, the more transparent the image looks. It is also used in animations to produce such things as fading effects, where one image gradually fades into another. Alternate Frame Rendering A graphical load-balancing scheme where two graphics cards are used to render alternate frames of the display. This configuration increases the detail of the 3D objects each card can render, as each card handles half of the total number of frames. Essentially, each card has more time to render

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148

112
surfaces, allowing game programmers to include more texture and lighting
details without affecting performance.
Adaptive Anti-aliasing
Adaptive anti-aliasing is a technique that applies a combination of multi-
sampling (MSAA) and super-sampling (SSAA) on 3D objects to improve
edge smoothness and fine detail. Multi-sampling works best on smoothing
the edges of solid polygons, but cannot effectively smooth edges within
polygons which are partially transparent. Super-sampling is able to more
accurately calculate color values adjacent to transparent pixel shader values
within polygons with partially transparent textures, but is not applied
universally since it is more processor-intensive. Adaptive anti-aliasing
works by using super-sampled anti-aliasing on transparent textures, and
multi-sampled anti-aliasing on all other textures. This delivers exceptional
levels of image quality, while maintaining performance.
AGP
The Accelerated Graphics Port (AGP) is a slot on the computer
motherboard designed specifically for 3D graphics cards. AGP runs 3D
images much more smoothly and quickly than was previously possible with
PCI video cards; AGP runs at several times the bus speed of PCI and
employs sideband addressing, so multiple data transfers between the
graphics processor and the computer can take place concurrently. AGP is
currently being phased out in favour of PCI Express® (PCIe™) on PC
systems.
Alpha Blending
Alpha blending is used in 3D graphics to create transparent or opaque
effects for surfaces such as glass and water. Alpha is a transparency value,
so the lower the value, the more transparent the image looks. It is also used
in animations to produce such things as fading effects, where one image
gradually fades into another.
Alternate Frame Rendering
A graphical load-balancing scheme where two graphics cards are used to
render alternate frames of the display. This configuration increases the
detail of the 3D objects each card can render, as each card handles half of
the total number of frames. Essentially, each card has more time to render