ATI X1300 User Guide - Page 136

Trilinear Filtering, Vector Adaptive Deinterlacing, VersaVision™, Vertex Shader, Vertex shader units

Page 136 highlights

128 Trilinear Filtering A sampling method used to produce realistic-looking 3D objects. Trilinear filtering averages one of the bilinear filter mipmap levels along with the standard mipmap samples. Vector Adaptive Deinterlacing A technique that provides smoother, less jagged edges for interlaced video playback. Interlaced video consists of alternating odd and even numbered scan lines, which are then mapped to an equivalent pixel-by-pixel display on a CRT or Flat Panel Display. Without correction, jagged lines appear in a video image either as doubled scan lines or lines that are improperly interpolated. With vector adaptive deinterlacing, the difference in pixel values is considered across multiple lines and alternating frames (using Pulldown detection on the interlaced video source), and then intelligently re-interpreted to produce smoother edges in interlaced video images. VersaVision™ An ATI technology enabling accelerated display rotation and scaling. Any desktop can now be rotated 90 degrees left or right, or even 180 degrees, while maintaining the full feature set of other ATI 2D and 3D technologies, such as SmoothVision™. VersaVision™ works with single or multiple displays. Vertex Shader Three-dimensional objects displayed on a screen are rendered using polygons, each of which is made up of intersecting triangles. A vertex is a corner of a triangle where it connects to another triangle, and each vertex carries a considerable amount of information describing its coordinates in 3D space, as well as its weight, color, texture coordinates, fog, and point size data. A vertex shader is a graphics processing function that manipulates these values, producing such things as more realistic lighting effects, improved complex textures such as hair and fur, and more accurate surface deformations such as waves rippling in a pool or the stretching and wrinkling of a character's clothes as he or she moves. Vertex shader units A feature built into the graphical processor which renders the texture, magnitude and direction of the individual triangles that comprise each polygon of a given 3D object. The more vertex shader units available

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148

128
Trilinear Filtering
A sampling method used to produce realistic-looking 3D objects. Trilinear
filtering averages one of the bilinear filter mipmap levels along with the
standard mipmap samples.
Vector Adaptive Deinterlacing
A technique that provides smoother, less jagged edges for interlaced video
playback. Interlaced video consists of alternating odd and even numbered
scan lines, which are then mapped to an equivalent pixel-by-pixel display
on a CRT or Flat Panel Display. Without correction, jagged lines appear in
a video image either as doubled scan lines or lines that are improperly
interpolated. With vector adaptive deinterlacing, the difference in pixel
values is considered across multiple lines and alternating frames (using
Pulldown detection on the interlaced video source), and then intelligently
re-interpreted to produce smoother edges in interlaced video images.
VersaVision™
An ATI technology enabling accelerated display rotation and scaling. Any
desktop can now be rotated 90 degrees left or right, or even 180 degrees,
while maintaining the full feature set of other ATI 2D and 3D technologies,
such as SmoothVision™. VersaVision™ works with single or multiple
displays.
Vertex Shader
Three-dimensional objects displayed on a screen are rendered using
polygons, each of which is made up of intersecting triangles. A vertex is a
corner of a triangle where it connects to another triangle, and each vertex
carries a considerable amount of information describing its coordinates in
3D space, as well as its weight, color, texture coordinates, fog, and point
size data. A vertex shader is a graphics processing function that
manipulates these values, producing such things as more realistic lighting
effects, improved complex textures such as hair and fur, and more accurate
surface deformations such as waves rippling in a pool or the stretching and
wrinkling of a character’s clothes as he or she moves.
Vertex shader units
A feature built into the graphical processor which renders the texture,
magnitude and direction of the individual triangles that comprise each
polygon of a given 3D object. The more vertex shader units available