Sharp R-1612 Service Manual - Page 15

Absolute Humidity Sensor Circuit

Page 15 highlights

ABSOLUTE HUMIDITY SENSOR CIRCUIT R-1610 R-1611 R-1612 (1) Structure of Absolute Humidity Sensor The absolute humidity sensor includes two thermistors as shown in the illustration. One thermistor is housed in the closed vessel filled with dry air while another in the open vessel. Each sensor is provided with the protective cover made of metal mesh to be protected from the external airflow. ventilation opening for sensing Thermistors Sensing part (Open vessel) Sensing part (Closed vessel) (2) Operational Principle of Absolute Humidity Sensor The figure below shows the basic structure of an absolute humidity sensor. A bridge circuit is formed by two thermistors and two resistors (R1 and R2). The output of the bridge circuit is to be amplified by the operational amplifier. Each thermistor is supplied with a current to keep it heated at about 150˚C (302˚F), the resultant heat is dissipated in the air and if the two thermistors are placed in different humidity conditions they show different degrees of heat conductivity leading to a potential difference between them causing an output voltage from the bridge circuit, the intensity of which is increased as the absolute humidity of the air increases. Since the output is very minute, it is amplified by the operational amplifier. Operational C R1 amplifier Output + voltage Absolute humidity vs, output voltage characteristic S R2 R3 S : Thermistor open vessel C : Thermistor closed vessel Absolute humidity (g/m 2) Output voltage R90 C90 0.1 uF C93 C91 0.01uF 0.015uF C92 0.01uF balance the bridge circuit is deviated to increase the voltage available at AN1 terminal of the LSI. Then the LSI observes that voltage at AN1 terminal and compares it with its initial value, and when the comparison rate reaches the preset value (fixed for each menu to be cooked), the LSI causes the unit to stop sensor cooking; thereafter, the unit goes in the next operation automatically. When the LSI starts to detect the initial voltage at AN1 terminal 16 seconds after the unit has been put in the Sensor Cooking mode, if it is not possible to balance, of the bridge circuit due to disconnection of the absolute humidity sensor, ERROR will appear on the display and the cooking is stopped. 1) Absolute humidity sensor circuit C. Thermistor in closed vessel S. Thermistor in open vessel R98 R99 R100 R101 R102 620k 300k 150k 75k 37.4k R97 47k F-1 C R96 F-3 3.57k S F-2 R91 3.32k R92 1.8k + R94 IC2 10k R93 360k R95 47k D90 SW1 30 P33 31 SW2 P34 32 SW3 P35 33 SW4 P36 34 SW5 P37 91 AN0 LSI (IC1) 92 AN1 VA : -15V VA : -15V VC : -5V (3) Detector Circuit of Absolute Humidity Sensor Circuit This detector circuit is used to detect the output voltage of the absolute humidity circuit to allow the LSI to control sensor cooking of the unit. When the unit is set in the sensor cooking mode, 16 seconds clearing cycle occurs than the detector circuit starts to function and the LSI observes the initial voltage available at its AN1 terminal. With this voltage given, the switches SW1 to SW5 in the LSI are turned on in such a way as to change the resistance values in parallel with R98 ~ R102 of IC2. Changing the resistance values results in that there is the same potential at both F-3 terminal of the absolute humidity sensor and AN0 terminal of the LSI. The voltage of AN1 terminal will indicate about -2.5V. This initial balancing is set up about 16 seconds after the unit is put in the Sensor Cooking mode. As the sensor cooking proceeds, the food is heated to generate moisture by which the resistance 13

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

13
R-1610
R-1611
R-1612
(3)
Detector Circuit of Absolute Humidity Sensor Circuit
This detector circuit is used to detect the output voltage of
the absolute humidity circuit to allow the LSI to control
sensor cooking of the unit.
When the unit is set in the
sensor cooking mode, 16 seconds clearing cycle occurs
than the detector circuit starts to function and the LSI
observes the initial voltage available at its AN1 terminal.
With this voltage given, the switches SW1 to SW5 in the
LSI are turned on in such a way as to change the
resistance values in parallel with R98 ~ R102 of IC2.
Changing the resistance values results in that there is the
same potential at both F-3 terminal of the absolute humidity
sensor and AN0 terminal of the LSI. The voltage of AN1
terminal will indicate about -2.5V.
This initial balancing is
set up about 16 seconds after the unit is put in the Sensor
Cooking mode.
As the sensor cooking proceeds, the food
is heated to generate moisture by which the resistance
ABSOLUTE HUMIDITY SENSOR CIRCUIT
C
S
R3
R1
R2
+
Operational
amplifier
Output
voltage
S : Thermistor
open vessel
C : Thermistor
closed vessel
2
Absolute humidity (g/m
)
Output voltage
Absolute humidity vs,
output voltage characteristic
SW1
SW2
SW3
SW4
SW5
P33
P34
P35
P36
P37
LSI
(IC1)
AN0
AN1
620k
300k
150k
75k
37.4k
30
33
34
91
92
32
31
47k
47k
IC2
10k
0.01uF
0.015uF
0.01uF
+
VA : -15V
VA : -15V
R90
C90
C91
C93
C92
S
F-2
1.8k
F-1
F-3
C
3.57k
3.32k
VC : -5V
0.1
uF
C. Thermistor in
closed vessel
S. Thermistor in
open vessel
R98
R99
R96
R91
360k
R93
R92
R94
R95
D90
R100
R101
R102
R97
(1) Structure of Absolute Humidity Sensor
The absolute humidity sensor includes two thermistors
as shown in the illustration. One thermistor is housed in
the closed vessel filled with dry air while another in the
open vessel. Each sensor is provided with the protective
cover made of metal mesh to be protected from the
external airflow.
(2) Operational Principle of Absolute Humidity Sensor
The figure below shows the basic structure of an absolute
humidity sensor. A bridge circuit is formed by two
thermistors and two resistors (R1 and R2).
The output of the bridge circuit is to be amplified by the
operational amplifier.
Each thermistor is supplied with a current to keep it
heated at about 150˚C (302˚F), the resultant heat is
dissipated in the air and if the two thermistors are placed
in different humidity conditions they show different
degrees of heat conductivity leading to a potential
difference between them causing an output voltage from
the bridge circuit, the intensity of which is increased as
the absolute humidity of the air increases. Since the
output is very minute, it is amplified by the operational
amplifier.
balance the bridge circuit is deviated to increase the
voltage available at AN1 terminal of the LSI.
Then the LSI observes that voltage at AN1 terminal and
compares it with its initial value, and when the comparison
rate reaches the preset value (fixed for each menu to be
cooked), the LSI causes the unit to stop sensor cooking;
thereafter, the unit goes in the next operation
automatically.
When the LSI starts to detect the initial voltage at AN1
terminal 16 seconds after the unit has been put in the
Sensor Cooking mode, if it is not possible to balance, of
the bridge circuit due to disconnection of the absolute
humidity sensor, ERROR will appear on the display and
the cooking is stopped.
1)
Absolute humidity sensor circuit
ventilation opening for sensing
Sensing part
(Open vessel)
Sensing part
(Closed vessel)
Thermistors