Dell PowerStore 1200T EMC PowerStore Hardware Information Guide for PowerStore - Page 34

Environmental recovery, Air quality requirements, Fire suppressant disclaimer

Page 34 highlights

Table 33. Base enclosure airflow Max Airflow CFM Min Airflow CFM 165 CFM 50 CFM Max Power Usage (Watts) 850 W Environmental recovery If the system exceeds the maximum ambient temperature by approximately 10°C (18°F), the nodes in the system begin an orderly shutdown that saves cached data, and then shut themselves down. Link control cards (LCCs) in each expansion enclosure in the system power down drives but remain powered on. If the system detects that the temperature has dropped to an acceptable level, it restores power to the base enclosures and the LCCs restore power to their drives. Air quality requirements The products are designed to be consistent with the requirements of the American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) Environmental Standard Handbook and the most current revision of Thermal Guidelines for Data Processing Environments, Second Edition, ASHRAE 2009b. Cabinets are best suited for Class 1 datacom environments, which consist of tightly controlled environmental parameters, including temperature, dew point, relative humidity and air quality. These facilities house mission-critical equipment and are typically fault-tolerant, including the air conditioners. The data center should maintain a cleanliness level as identified in ISO 14664-1, class 8 for particulate dust and pollution control. The air entering the data center should be filtered with a MERV 11 filter or better. The air within the data center should be continuously filtered with a MERV 8 or better filtration system. In addition, efforts should be maintained to prevent conductive particles, such as zinc whiskers, from entering the facility. The allowable relative humidity level is 20 to 80% non condensing, however, the recommended operating environment range is 40 to 55%. For data centers with gaseous contamination, such as high sulfur content, lower temperatures and humidity are recommended to minimize the risk of hardware corrosion and degradation. In general, the humidity fluctuations within the data center should be minimized. It is also recommended that the data center be positively pressured and have air curtains on entry ways to prevent outside air contaminants and humidity from entering the facility. For facilities below 40% relative humidity, it is recommended to use grounding straps when contacting the equipment to avoid the risk of Electrostatic discharge (ESD), which can harm electronic equipment. As part of an ongoing monitoring process for the corrosiveness of the environment, it is recommended to place copper and silver coupons (per ISA 71.04-1985, Section 6.1 Reactivity), in airstreams representative of those in the data center. The monthly reactivity rate of the coupons should be less than 300 Angstroms. When monitored reactivity rate is exceeded, the coupon should be analyzed for material species and a corrective mitigation process put in place. Storage time (unpowered) recommendation: do not exceed 6 consecutive months of unpowered storage. Fire suppressant disclaimer Fire prevention equipment in the computer room should always be installed as an added safety measure. A fire suppression system is the responsibility of the customer. When selecting appropriate fire suppression equipment and agents for the data center, choose carefully. An insurance underwriter, local fire marshal, and local building inspector are all parties that you should consult during the selection of a fire suppression system that provides the correct level of coverage and protection. Equipment is designed and manufactured to internal and external standards that require certain environments for reliable operation. We do not make compatibility claims of any kind nor do we provide recommendations on fire suppression systems. It is not recommended to position storage equipment directly in the path of high pressure gas discharge streams or loud fire sirens so as to minimize the forces and vibration adverse to system integrity. NOTE: The previous information is provided on an "as is" basis and provides no representations, warranties, guarantees or obligations on the part of our company. This information does not modify the scope of any warranty set forth in the terms and conditions of the basic purchasing agreement between the customer and the manufacturer. 34 Technical specifications

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

Table 33. Base enclosure airflow
Max Airflow CFM
Min Airflow CFM
Max Power
Usage (Watts)
165 CFM
50 CFM
850 W
Environmental recovery
If the system exceeds the maximum ambient temperature by approximately 10°C (18°F), the nodes in the system begin an
orderly shutdown that saves cached data, and then shut themselves down. Link control cards (LCCs) in each expansion
enclosure in the system power down drives but remain powered on.
If the system detects that the temperature has dropped to an acceptable level, it restores power to the base enclosures and the
LCCs restore power to their drives.
Air quality requirements
The products are designed to be consistent with the requirements of the American Society of Heating, Refrigeration and Air
Conditioning Engineers (ASHRAE) Environmental Standard Handbook and the most current revision of Thermal Guidelines for
Data Processing Environments, Second Edition, ASHRAE 2009b.
Cabinets are best suited for Class 1 datacom environments, which consist of tightly controlled environmental parameters,
including temperature, dew point, relative humidity and air quality. These facilities house mission-critical equipment and are
typically fault-tolerant, including the air conditioners.
The data center should maintain a cleanliness level as identified in ISO 14664-1, class 8 for particulate dust and pollution control.
The air entering the data center should be filtered with a MERV 11 filter or better. The air within the data center should be
continuously filtered with a MERV 8 or better filtration system. In addition, efforts should be maintained to prevent conductive
particles, such as zinc whiskers, from entering the facility.
The allowable relative humidity level is 20 to 80% non condensing, however, the recommended operating environment range
is 40 to 55%. For data centers with gaseous contamination, such as high sulfur content, lower temperatures and humidity are
recommended to minimize the risk of hardware corrosion and degradation. In general, the humidity fluctuations within the data
center should be minimized. It is also recommended that the data center be positively pressured and have air curtains on entry
ways to prevent outside air contaminants and humidity from entering the facility.
For facilities below 40% relative humidity, it is recommended to use grounding straps when contacting the equipment to avoid
the risk of Electrostatic discharge (ESD), which can harm electronic equipment.
As part of an ongoing monitoring process for the corrosiveness of the environment, it is recommended to place copper and
silver coupons (per ISA 71.04-1985, Section 6.1 Reactivity), in airstreams representative of those in the data center. The
monthly reactivity rate of the coupons should be less than 300 Angstroms. When monitored reactivity rate is exceeded, the
coupon should be analyzed for material species and a corrective mitigation process put in place.
Storage time (unpowered) recommendation: do not exceed 6 consecutive months of unpowered storage.
Fire suppressant disclaimer
Fire prevention equipment in the computer room should always be installed as an added safety measure. A fire suppression
system is the responsibility of the customer. When selecting appropriate fire suppression equipment and agents for the data
center, choose carefully. An insurance underwriter, local fire marshal, and local building inspector are all parties that you should
consult during the selection of a fire suppression system that provides the correct level of coverage and protection.
Equipment is designed and manufactured to internal and external standards that require certain environments for reliable
operation. We do not make compatibility claims of any kind nor do we provide recommendations on fire suppression systems. It
is not recommended to position storage equipment directly in the path of high pressure gas discharge streams or loud fire sirens
so as to minimize the forces and vibration adverse to system integrity.
NOTE:
The previous information is provided on an “as is” basis and provides no representations, warranties, guarantees or
obligations on the part of our company. This information does not modify the scope of any warranty set forth in the terms
and conditions of the basic purchasing agreement between the customer and the manufacturer.
34
Technical specifications