Fujitsu MH2060AH Manual/User Guide - Page 70

Spindle motor control, phase, W-phase to V-phase

Page 70 highlights

Theory of Device Operation 4.7.5 Spindle motor control Hall-less three-phase twelve-pole motor is used for the spindle motor, and the 3phase full/half-wave analog current control circuit is used as the spindle motor driver (called SVC hereafter). The firmware operates on the MPU manufactured by Fujitsu. The spindle motor is controlled by sending several signals from the MPU to the SVC. There are three modes for the spindle control; start mode, acceleration mode, and stable rotation mode. (1) Start mode When power is supplied, the spindle motor is started in the following sequence: a) After the power is turned on, the MPU sends a signal to the SVC to charge the charge pump capacitor of the SVC. The charged amount defines the current that flows in the spindle motor. b) When the charge pump capacitor is charged enough, the MPU sets the SVC to the motor start mode. Then, a current (approx. 0.3 A) flows into the spindle motor. c) A phase switching signal is generated and the phase of the current flowed in the motor is changed in the order of (V-phase to U-phase), (W-phase to Uphase), (W-phase to V-phase), (U-phase to V-phase), (U-phase to W-phase), and (V-phase to W-phase) (after that, repeating this order). d) During phase switching, the spindle motor starts rotating in low speed, and generates a counter electromotive force. The SVC detects this counter electromotive force and reports to the MPU using a PHASE signal for speed detection. e) The MPU is waiting for a PHASE signal. When no phase signal is sent for a specific period, the MPU resets the SVC and starts from the beginning. When a PHASE signal is sent, the SVC enters the acceleration mode. (2) Acceleration mode In this mode, the MPU stops to send the phase switching signal to the SVC. The SVC starts a phase switching by itself based on the counter electromotive force. Then, rotation of the spindle motor accelerates. The MPU calculates a rotational speed of the spindle motor based on the PHASE signal from the SVC, and waits till the rotational speed reaches 5,400 rpm. When the rotational speed reaches 5,400 rpm, the SVC enters the stable rotation mode. (3) Stable rotation mode The PLL (FLL) circuit is contained in the SVC that is used for this hard disk drive. The circuit controls the hardware to keep the rotational state steady to maintain the target rotational speed. The firmware calculates the time for one rotation based on the PHASE signal output from the SVC to monitor the rotational state. The control of this mode (charge/discharge) is performed every rotation 4-18 C141-E195-02EN

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250

Theory of Device Operation
4-18
C141-E195-02EN
4.7.5 Spindle motor control
Hall-less three-phase twelve-pole motor is used for the spindle motor, and the 3-
phase full/half-wave analog current control circuit is used as the spindle motor
driver (called SVC hereafter).
The firmware operates on the MPU manufactured
by Fujitsu.
The spindle motor is controlled by sending several signals from the
MPU to the SVC.
There are three modes for the spindle control; start mode,
acceleration mode, and stable rotation mode.
(1) Start mode
When power is supplied, the spindle motor is started in the following sequence:
a)
After the power is turned on, the MPU sends a signal to the SVC to charge
the charge pump capacitor of the SVC.
The charged amount defines the
current that flows in the spindle motor.
b)
When the charge pump capacitor is charged enough, the MPU sets the SVC
to the motor start mode.
Then, a current (approx. 0.3 A) flows into the
spindle motor.
c)
A phase switching signal is generated and the phase of the current flowed in
the motor is changed in the order of (V-phase to U-phase),
(W-phase to U-
phase), (W-phase to V-phase), (U-phase to V-phase), (U-phase to W-phase),
and (V-phase to W-phase) (after that, repeating this order).
d)
During phase switching, the spindle motor starts rotating in low speed, and
generates a counter electromotive force.
The SVC detects this counter
electromotive force and reports to the MPU using a PHASE signal for speed
detection.
e)
The MPU is waiting for a PHASE signal.
When no phase signal is sent for a
specific period, the MPU resets the SVC and starts from the beginning.
When a PHASE signal is sent, the SVC enters the acceleration mode.
(2) Acceleration mode
In this mode, the MPU stops to send the phase switching signal to the SVC.
The
SVC starts a phase switching by itself based on the counter electromotive force.
Then, rotation of the spindle motor accelerates.
The MPU calculates a rotational
speed of the spindle motor based on the PHASE signal from the SVC, and waits
till the rotational speed reaches 5,400 rpm.
When the rotational speed reaches
5,400 rpm, the SVC enters the stable rotation mode.
(3) Stable rotation mode
The PLL (FLL) circuit is contained in the SVC that is used for this hard disk
drive.
The circuit controls the hardware to keep the rotational state steady to
maintain the target rotational speed.
The firmware calculates the time for one rotation based on the PHASE signal
output from the SVC to monitor the rotational state.
The control of this mode
(charge/discharge) is performed every rotation