3Ware 9500S-4LP User Guide - Page 16

RAID 5, RAID 1 Configuration Example

Page 16 highlights

Introducing the 3ware 9000 Series Controller Figure 2). This gives your system fault tolerance by preserving the data on one drive if the other drive fails. Fault tolerance is a basic requirement for mission critical systems like web and database servers. 3ware uses a patented technology, TwinStor®, on RAID 1 arrays for improved performance during sequential read operations. With TwinStor technology, read performance is twice the speed of a single drive during sequential read operation. The adaptive algorithms in TwinStor technology boost performance by distinguishing between random and sequential read requests. For the sequential requests generated when accessing large files, both drives are used, with the heads simultaneously reading alternating sections of the file. For the smaller random transactions, the data is read from a single optimal drive head. Figure 2. RAID 1 Configuration Example RAID 5 Combines striping data with parity (exclusive OR) to restore data in case of a drive failure. This array type provides performance, fault tolerance, high capacity, and storage efficiency. Requires a minimum of three drives. Parity information is distributed across all drives rather than being concentrated on a single disk (see Figure 3). This avoids throughput loss due to contention for the parity drive. RAID 5 0 parity A1 A2 A3 A4 A Blocks B0 1 parity B2 B3 B4 B Blocks C0 C1 2 parity C3 C4 C Blocks D0 D1 D2 3 parity D4 D Blocks E0 E1 E2 E3 4 parity E Blocks Figure 3. RAID 5 Configuration Example RAID 10 This array is a combination of RAID 1 with RAID 0. Striped and mirrored arrays for fault tolerance and high performance. Requires a minimum of four drives to use both RAID 0 and RAID 1 techniques. 10 3ware 9000 Series Serial ATA RAID Controller User Guide

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192

Introducing the 3ware 9000 Series Controller
10
3ware 9000 Series Serial ATA RAID Controller User Guide
Figure 2). This gives your system fault tolerance by preserving the data on
one drive if the other drive fails. Fault tolerance is a basic requirement for
mission critical systems like web and database servers.
3ware uses a patented technology, TwinStor®, on RAID 1 arrays for
improved performance during sequential read operations. With TwinStor
technology, read performance is twice the speed of a single drive during
sequential read operation.
The adaptive algorithms in TwinStor technology boost performance by
distinguishing between random and sequential read requests. For the
sequential requests generated when accessing large files, both drives are used,
with the heads simultaneously reading alternating sections of the file. For the
smaller random transactions, the data is read from a single optimal drive head.
Figure 2. RAID 1 Configuration Example
RAID 5
Combines striping data with parity (exclusive OR) to restore data in case of a
drive failure. This array type provides performance, fault tolerance, high
capacity, and storage efficiency. Requires a minimum of three drives.
Parity information is distributed across all drives rather than being
concentrated on a single disk (see Figure 3). This avoids throughput loss due
to contention for the parity drive.
Figure 3. RAID 5 Configuration Example
RAID 10
This array is a combination of RAID 1 with RAID 0. Striped and mirrored
arrays for fault tolerance and high performance. Requires a minimum of four
drives to use both RAID 0 and RAID 1 techniques.
RAID 5
A Blocks
0 parity
A4
A3
A2
A1
1 parity
B4
B3
B2
2 parity
C4
C3
C1
3 parity
D4
D2
D1
4 parity
E3
E2
E1
B0
C0
D0
E0
B Blocks
C Blocks
D Blocks
E Blocks