Intel E6700 Mechanical Design Guidelines - Page 65

Temperature

Page 65 highlights

Intel® Quiet System Technology (Intel® QST) temperature to the target temperature. As a result of its operation, the PID control algorithm can enable an acoustic-friendly platform. Figure 7-2. PID Controller Fundamentals Integral (time averaged) Actual Temperature Proportional Error Limit Temperature Derivative (Slope) Temperature - dPWM + dPWM Time Fan Speed RPM For a PID algorithm to work limit temperatures are assigned for each temperature sensor. For Intel QST, the TCONTROL for the processor and chipset are to be used as the limit temperature. The ME will measure the error, slope and rate of change using the equations below: • Proportional Error (P) = TLIMIT - TACTUAL • Integral (I) = Time averaged error • Derivative (D) = ΔTemp / ΔTime Three gain values are used to control response of algorithm. • Kp = proportional gain • Ki = Integral gain • Kd = derivative gain The Intel® Quiet System Technology (Intel® QST) Configuration and Tuning Manual provides initial values for the each of the gain constants. In addition it provides a methodology to tune these gain values based on system response. Finally, the fan speed change will be calculated using the following formula: ΔPWM = -P*(Kp) - I*(Ki) + D*(Kd) Thermal and Mechanical Design Guidelines 65

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126

Intel® Quiet System Technology (Intel® QST)
Thermal and Mechanical Design Guidelines
65
temperature to the target temperature. As a result of its operation, the PID control
algorithm can enable an acoustic-friendly platform.
Figure 7-2. PID Controller Fundamentals
For a PID algorithm to work limit temperatures are assigned for each temperature
sensor. For Intel QST, the T
CONTROL
for the processor and chipset are to be used as the
limit temperature. The ME will measure the error, slope and rate of change using the
equations below:
Proportional Error (P) = T
LIMIT
– T
ACTUAL
Integral (I) = Time averaged error
Derivative (D) = ΔTemp / ΔTime
Three gain values are used to control response of algorithm.
Kp = proportional gain
Ki = Integral gain
Kd = derivative gain
The
Intel
®
Quiet System Technology (Intel
®
QST) Configuration and Tuning Manual
provides initial values for the each of the gain constants. In addition it provides a
methodology to tune these gain values based on system response.
Finally, the fan speed change will be calculated using the following formula:
Δ
PWM = -P*(Kp) – I*(Ki) + D*(Kd)
Proportional
Error
Derivative (Slope)
Integral (time averaged)
Proportional
Error
Derivative (Slope)
Integral (time averaged)
Proportional
Error
Derivative (Slope)
Integral (time averaged)
Proportional
Error
Derivative (Slope)
Integral (time averaged)
RPM
Temperature
Time
+ dPWM
+ dPWM
+ dPWM
+ dPWM
+ dPWM
+ dPWM
-
dPWM
dPWM
-
dPWM
dPWM
-
dPWM
dPWM
Actual
Temperature
Actual
Temperature
Fan
Speed
Fan
Speed
Limit
Temperature
Limit
Temperature