Alcatel OS6400-24 User Guide - Page 126

Avoiding Split Stacks, Do Not Reload Non-Adjacent Switches Simultaneously

Page 126 highlights

Reloading Switches Managing OmniSwitch 6400 Series Stacks Avoiding Split Stacks The term "splitting" a stack refers to the creation of isolated modules within the virtual chassis. A split stack can result from the following conditions: • Two or more non-adjacent switches are reloaded simultaneously • The stack is reloaded without a redundant stacking cable connection The sections below offer simple guidelines for avoiding splitting the stack during the reload process. Do Not Reload Non-Adjacent Switches Simultaneously If non-adjacent switches in the stack-for example, the top switch in the stack and the third-from-top switch in the stack-are reloaded simultaneously, a problem will occur. The switch between the two nonadjacent switches will become isolated and the virtual chassis will be effectively split. To avoid splitting the stack, do not reload the two non-adjacent switches simultaneously. Instead, simply reload the top switch first, then reload the third-from-top switch, or vice-versa. Be Sure a Redundant Stacking Cable is Installed at All Times Another important guideline for avoiding split stacks involves the redundant stacking cable. In order to avoid isolated modules within the virtual chassis, simply make sure that a redundant stacking cable connection exists between the top-most and bottom-most switches at all times. For more information on the redundant stacking cable connection, refer to page 5-16. page 5-32 OmniSwitch 6400 Series Hardware Users Guide April 2011

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150

Reloading Switches
Managing OmniSwitch 6400 Series Stacks
page 5-32
OmniSwitch 6400 Series Hardware Users Guide
April 2011
Avoiding Split Stacks
The term “splitting” a stack refers to the creation of isolated modules within the virtual chassis. A split
stack can result from the following conditions:
Two or more
non-adjacent
switches are reloaded simultaneously
The stack is reloaded without a redundant stacking cable connection
The sections below offer simple guidelines for avoiding splitting the stack during the reload process.
Do Not Reload Non-Adjacent Switches Simultaneously
If non-adjacent switches in the stack—for example, the top switch in the stack and the third-from-top
switch in the stack—are reloaded
simultaneously
, a problem will occur. The switch between the two non-
adjacent switches will become isolated and the virtual chassis will be effectively split.
To avoid splitting the stack, do not reload the two non-adjacent switches simultaneously. Instead, simply
reload the top switch first, then reload the third-from-top switch, or vice-versa.
Be Sure a Redundant Stacking Cable is Installed at All Times
Another important guideline for avoiding split stacks involves the redundant stacking cable. In order to
avoid isolated modules within the virtual chassis, simply make sure that a redundant stacking cable
connection exists between the top-most and bottom-most switches at all times.
For more information on the redundant stacking cable connection, refer to
page 5-16
.