HP GbE2c HP GbE2c Ethernet Blade Switch for c-Class BladeSystem User Guide - Page 11

Port mirroring, Port trunking and load balancing, TFTP support, Store and forward switching scheme, - firmware upgrade

Page 11 highlights

In addition, the switch provides a spanning tree domain per VLAN. The switch is compatible with Cisco® PVST+ and Cisco PVST, when the other device is configured as untagged or configured to use 802.1q tagging. Sixteen spanning tree domains are supported per switch. NOTE: STP 16 is reserved for future functionality. The switch also provides IEEE 802.1s-based MSTP and IEEE 802.1w-based RSTP. SNMP The switch is configured and monitored remotely from an SNMP-based network management station. The switch supports industry-standard SNMP MIBs and proprietary HP enterprise switch MIBs for fault detection and monitoring of switch functionality. In addition, the switch supports various environmental traps such as temperature and fan failure traps. To secure the management interface, the switch administrator configures community strings with two levels of access: Read and Read/Write. Access to the switch is also restricted to only management stations that are members of a specific IP network. This is achieved by configuring the address/mask of that specific network as a restricted management network address/mask. Port mirroring The switch allows mirroring of one or multiple ports (source ports) to another port (destination port) for network monitoring and troubleshooting purposes. This technology offers a way for network packet analyzers to view the traffic moving through the switch by providing a copy of the traffic that is currently being passed through any other port. The packets are sent to a network packet analyzer or other monitoring device attached to the mirror port. Port trunking and load balancing The switch supports EtherChannel compatible IEEE 802.3ad (without LACP) port trunking allowing several ports to be grouped together and act as a single logical link called a trunk. This feature provides a bandwidth that is a multiple of the bandwidth of a single link. It also improves reliability since load balancing is automatically applied to the ports in the trunked group. A link failure within the group causes the network traffic to be directed to the remaining links in the group. TFTP support TFTP support allows the switch firmware to be upgraded by downloading a new firmware file from a TFTP server to the switch. Firmware images of the switch are also uploaded to a TFTP server, a configuration file is downloaded into a switch from a TFTP server, and configuration settings are saved to the TFTP server. Store and forward switching scheme The switch provides a store and forward switching scheme that allows each packet to be buffered (stored) before it is forwarded to its destination. While this method creates latency, it improves reliability in a heavily used switch. Packets that cannot be forwarded are saved immediately, rather than dropped, so that packets behind them are less likely to be dropped in periods of heavy usage. BOOTP By default, the switch is configured to obtain an IP address from a BOOTP server during the boot process. The IP settings are also manually configured by means of the serial interface. The IP settings are Introduction 11

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58

Introduction 11
In addition, the switch provides a spanning tree domain per VLAN. The switch is compatible with Cisco®
PVST+ and Cisco PVST, when the other device is configured as untagged or configured to use 802.1q
tagging. Sixteen spanning tree domains are supported per switch.
NOTE:
STP 16 is reserved for future functionality.
The switch also provides IEEE 802.1s-based MSTP and IEEE 802.1w-based RSTP.
SNMP
The switch is configured and monitored remotely from an SNMP-based network management station. The
switch supports industry-standard SNMP MIBs and proprietary HP enterprise switch MIBs for fault
detection and monitoring of switch functionality. In addition, the switch supports various environmental
traps such as temperature and fan failure traps.
To secure the management interface, the switch administrator configures community strings with two levels
of access: Read and Read/Write. Access to the switch is also restricted to only management stations that
are members of a specific IP network. This is achieved by configuring the address/mask of that specific
network as a restricted management network address/mask.
Port mirroring
The switch allows mirroring of one or multiple ports (source ports) to another port (destination port) for
network monitoring and troubleshooting purposes. This technology offers a way for network packet
analyzers to view the traffic moving through the switch by providing a copy of the traffic that is currently
being passed through any other port. The packets are sent to a network packet analyzer or other
monitoring device attached to the mirror port.
Port trunking and load balancing
The switch supports EtherChannel compatible IEEE 802.3ad (without LACP) port trunking allowing several
ports to be grouped together and act as a single logical link called a trunk. This feature provides a
bandwidth that is a multiple of the bandwidth of a single link. It also improves reliability since load
balancing is automatically applied to the ports in the trunked group. A link failure within the group causes
the network traffic to be directed to the remaining links in the group.
TFTP support
TFTP support allows the switch firmware to be upgraded by downloading a new firmware file from a TFTP
server to the switch. Firmware images of the switch are also uploaded to a TFTP server, a configuration
file is downloaded into a switch from a TFTP server, and configuration settings are saved to the TFTP
server.
Store and forward switching scheme
The switch provides a store and forward switching scheme that allows each packet to be buffered (stored)
before it is forwarded to its destination. While this method creates latency, it improves reliability in a
heavily used switch. Packets that cannot be forwarded are saved immediately, rather than dropped, so
that packets behind them are less likely to be dropped in periods of heavy usage.
BOOTP
By default, the switch is configured to obtain an IP address from a BOOTP server during the boot process.
The IP settings are also manually configured by means of the serial interface. The IP settings are