HP StorageWorks 2/140 FW 08.01.00 McDATA Products in a SAN Environment Plannin - Page 208

SFP Optical Transceivers, Data Transmission, Distance

Page 208 highlights

Physical Planning Considerations 5 SFP Optical Transceivers Data Transmission Distance Shortwave laser SFP optical transceivers (1.0625, 2.1250, 4.2500, or 10.2000 Gbps) provide a connection for multimode cable with a core diameter of 50 microns and a cladding diameter of 125 microns (50/125 micron), or multimode cable with a core diameter of 62.50 microns and a cladding diameter of 125 microns (62.5/125 micron). Longwave laser SFP optical transceivers (1.0625, 2.1250, 4.2500, or 10.2000 Gbps) provide a connection for singlemode cable with a core diameter of 9 microns and a cladding diameter of 125 microns (9/125 micron). Consider the following when determining the number and type of transceivers to use: • Distance between a director or fabric switch and the attached Fibre Channel device or between fabric elements communicating through an ISL. • Cost effectiveness. • Device restrictions or requirements with respect to existing fiber-optic (multimode or singlemode) or copper cable. Data transmission distance is a factor governing the choice of transceiver type, fiber-optic cable type, and transmission rate. When using multimode cable, if the core diameter or data transmission rate increases, the data transmission distance decreases. Link budget is another governing factor. A link budget is the attenuation (in dB) a connection between devices can sustain before significant link errors or loss of signal occur. When using multimode cable, if the core diameter or data transmission rate increases, the link budget decreases. Cable-conversion, repeater, patch-panel, or other connections within a link also decrease the link budget. Each connection introduces a nominal signal loss of at least one dB through the link. Patch panel connections (with one connection at each side of the panel) typically introduce a two dB signal loss through a link. Other variables such as the grade of fiber-optic cable, device restrictions, application restrictions, buffer-to-buffer credit limits, and performance requirements can also affect data transmission distance and link budget. Table 5-1 lists unrepeated data transmission distance and link budget as a function of fiber-optic cable type and data transmission rate. 5-4 McDATA Products in a SAN Environment - Planning Manual

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318

5
5-4
McDATA Products in a SAN Environment - Planning Manual
Physical Planning Considerations
SFP Optical
Transceivers
Shortwave laser SFP optical transceivers (1.0625, 2.1250, 4.2500, or
10.2000 Gbps) provide a connection for multimode cable with a core
diameter of 50 microns and a cladding diameter of 125 microns
(50/125 micron), or multimode cable with a core diameter of 62.50
microns and a cladding diameter of 125 microns (62.5/125 micron).
Longwave laser SFP optical transceivers (1.0625, 2.1250, 4.2500, or
10.2000 Gbps) provide a connection for singlemode cable with a core
diameter of 9 microns and a cladding diameter of 125 microns
(9/125 micron).
Consider the following when determining the number and type of
transceivers to use:
Distance between a director or fabric switch and the attached
Fibre Channel device or between fabric elements communicating
through an ISL.
Cost effectiveness.
Device restrictions or requirements with respect to existing
fiber-optic (multimode or singlemode) or copper cable.
Data Transmission
Distance
Data transmission distance is a factor governing the choice of
transceiver type, fiber-optic cable type, and transmission rate. When
using multimode cable, if the core diameter or data transmission rate
increases, the data transmission distance decreases.
Link budget is another governing factor. A link budget is the
attenuation (in dB) a connection between devices can sustain before
significant link errors or loss of signal occur. When using multimode
cable, if the core diameter or data transmission rate increases, the link
budget decreases.
Cable-conversion, repeater, patch-panel, or other connections within
a link also decrease the link budget. Each connection introduces a
nominal signal loss of at least one dB through the link. Patch panel
connections (with one connection at each side of the panel) typically
introduce a two dB signal loss through a link.
Other variables such as the grade of fiber-optic cable, device
restrictions, application restrictions, buffer-to-buffer credit limits, and
performance requirements can also affect data transmission distance
and link budget.
Table 5-1
lists unrepeated data transmission distance and link budget
as a function of fiber-optic cable type and data transmission rate.