HP DL360 Memory technology evolution: an overview of system memory technologie - Page 6

Memory bus speed, Burst mode access

Page 6 highlights

Memory bus speed The speed of the DRAM is not the same as the true speed (or frequency) of the overall memory subsystem. The memory subsystem operates at the memory bus speed, which may not be the same frequency (in MHz) as the main system bus clock. The two main factors that control the speed of the memory subsystem are the memory timing and the maximum DRAM speed. The server BIOS sets the memory system speed based on the fastest common frequency of the loaded DIMMs. Burst mode access The original DRAM took approximately six system-bus clock cycles for each memory access. During memory access, first the RAS and CAS and then 64 bits of data were transferred through the memory bus. The next sequential address access required a repeat of the RAS-CAS-Data sequence. As a result, most of the overhead occurred while transferring row and column addresses, rather than the data. FPM and EDO improved performance by automatically retrieving data from sequential memory locations on the assumption that they would also be requested. Using this process called burst mode access, four consecutive 64-bit sections of memory are accessed, one after the other, based on the address of the first section. So instead of taking six clock cycles to access each of the last three 64-bit sections, it may take from one to three clock cycles each (see Figure 4). Burst mode access timing is normally stated in the format "x-y-y-y" where "x" represents the number of clock cycles to read/write the first 64 bits and "y" represents the number of clock cycles required for the second, third, and fourth reads/writes. For example, prior to burst mode access, DRAM took up to 24 clock cycles (6-6-6-6) to access four 64-bit memory sections. With burst mode access, three additional data sections are accessed with every clock cycle after the first access (6-1-1-1) before the memory controller has to send another CAS. Figure 4. Burst mode access Clock Command Address Data Active NOP NOP Read NOP NOP NOP NOP NOP NOP Row Col Data Data Data Data 64b 64b 64b 64b NOTE: NOP = No Operation Instruction 6

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

6
Memory bus speed
The speed of the DRAM is not the same as the true speed (or frequency) of the overall memory
subsystem. The memory subsystem operates at the memory bus speed, which may not be the same
frequency (in MHz) as the main system bus clock. The two main factors that control the speed of the
memory subsystem are the memory timing and the maximum DRAM speed. The server BIOS sets the
memory system speed based on the fastest common frequency of the loaded DIMMs.
Burst mode access
The original DRAM took approximately six system-bus clock cycles for each memory access. During
memory access, first the RAS and CAS and then 64 bits of data were transferred through the memory
bus. The next sequential address access required a repeat of the RAS-CAS-Data sequence. As a result,
most of the overhead occurred while transferring row and column addresses, rather than the data.
FPM and EDO improved performance by automatically retrieving data from sequential memory
locations on the assumption that they would also be requested. Using this process called burst mode
access, four consecutive 64-bit sections of memory are accessed, one after the other, based on the
address of the first section. So instead of taking six clock cycles to access each of the last three 64-bit
sections, it may take from one to three clock cycles each (see Figure 4).
Burst mode access timing is normally stated in the format “x
-y-y-
y” where “x” rep
resents the number of
clock cycles to read/write the first 64 bits and “y” represents the number of clock cycles required for
the second, third, and fourth reads/writes. For example, prior to burst mode access, DRAM took up to
24 clock cycles (6-6-6-6) to access four 64-bit memory sections. With burst mode access, three
additional data sections are accessed with every clock cycle after the first access (6-1-1-1) before the
memory controller has to send another CAS.
Figure 4.
Burst mode access
Active
Row
NOP
NOP
Read
Col
NOP
NOP
NOP
NOP
Data
Data
Data
Data
NOP
NOP
64b
64b
64b
64b
Clock
Command
Address
Data
NOTE: NOP = No Operation Instruction