Campbell Scientific CR6 CR6 Measurement and Control System - Page 244

PRTCalc, BRFull

Page 244 highlights

Section 7. Installation X = 1000 VS/VX where, VS = measured bridge-output voltage VX = excitation voltage or, X = 1000 (RS/(RS+R1) - R3/(R2+R3)). With reference to figure PT100 in Four-Wire Full-Bridge (p. 245), the resistance of the PRT (RS) is calculated as: RS = R1 X' / (1-X') where X' = X / 1000 + R3/(R2+R3) Thus, to obtain the value RS/R0, (R0 = RS @ 0 °C) for the temperature calculating instruction PRTCalc(), the multiplier and offset used in BRFull() are 0.001 and R3/(R2+R3), respectively. The multiplier (Rf) used in the bridge transform algorithm (X = Rf (X/(X-1)) to obtain RS/R0 is R1/R0 or (5000/100 = 50). The application requires control of the temperature bath at 50 °C with as little variation as possible. High resolution is desired so the control algorithm will respond to minute changes in temperature. The highest resolution is obtained when the temperature range results in an output-voltage (VS) range, which fills the measurement range selected in BRFull(). The full-bridge configuration allows the bridge to be balanced (VS = 0 V) at or near the control temperature. Thus, the output voltage can go both positive and negative as the bath temperature changes, allowing the full use of the measurement range. The resistance of the PRT is approximately 119.7 Ω at 50 °C. The 120 Ω fixed resistor balances the bridge at approximately 51 °C. The output voltage is: VS = VX [RS/(RS+R1) - R3/(R2+R3)] = VX [RS/(RS+5000) - 0.023438] The temperature range to be covered is 50 °C ±10 °C. At 40 °C, RS is approximately 115.8 Ω, or: VS = -802.24E-6 VX. Even with an excitation voltage (VX) equal to mV, VS can be measured on the ± mV scale (40 °C / 115.8 Ω / mV, 60 °C / 123.6 Ω / mV). There is a change of approximately mV from the output at 40°C to the output at 51 °C, or µV / °C. With a resolution of 0.33 µV on the ± mV range, this means that the temperature resolution is 0.0009 °C. The ±5 ppm per °C temperature coefficient of the fixed resistors was chosen because the ±0.01% accuracy tolerance would hold over the desired temperature range. 244

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
  • 374
  • 375
  • 376
  • 377
  • 378
  • 379
  • 380
  • 381
  • 382
  • 383
  • 384
  • 385
  • 386
  • 387
  • 388
  • 389
  • 390
  • 391
  • 392
  • 393
  • 394
  • 395
  • 396
  • 397
  • 398
  • 399
  • 400
  • 401
  • 402
  • 403
  • 404
  • 405
  • 406
  • 407
  • 408
  • 409
  • 410
  • 411
  • 412
  • 413
  • 414
  • 415
  • 416
  • 417
  • 418
  • 419
  • 420
  • 421
  • 422
  • 423
  • 424
  • 425
  • 426
  • 427
  • 428
  • 429
  • 430
  • 431
  • 432
  • 433
  • 434
  • 435
  • 436
  • 437
  • 438
  • 439
  • 440
  • 441
  • 442
  • 443
  • 444
  • 445
  • 446
  • 447
  • 448
  • 449
  • 450
  • 451
  • 452
  • 453
  • 454
  • 455
  • 456
  • 457
  • 458
  • 459
  • 460
  • 461
  • 462
  • 463
  • 464
  • 465
  • 466
  • 467
  • 468
  • 469
  • 470
  • 471
  • 472
  • 473
  • 474
  • 475
  • 476
  • 477
  • 478
  • 479
  • 480
  • 481
  • 482
  • 483
  • 484
  • 485
  • 486
  • 487
  • 488
  • 489
  • 490
  • 491
  • 492
  • 493
  • 494
  • 495
  • 496
  • 497
  • 498
  • 499
  • 500
  • 501
  • 502
  • 503
  • 504
  • 505
  • 506
  • 507
  • 508
  • 509
  • 510
  • 511
  • 512
  • 513
  • 514
  • 515
  • 516
  • 517
  • 518
  • 519
  • 520
  • 521
  • 522
  • 523
  • 524
  • 525
  • 526
  • 527
  • 528
  • 529
  • 530
  • 531
  • 532
  • 533
  • 534
  • 535
  • 536
  • 537
  • 538
  • 539
  • 540
  • 541
  • 542
  • 543
  • 544
  • 545
  • 546
  • 547
  • 548
  • 549
  • 550
  • 551
  • 552
  • 553
  • 554
  • 555
  • 556
  • 557
  • 558
  • 559
  • 560
  • 561
  • 562
  • 563
  • 564
  • 565
  • 566
  • 567
  • 568
  • 569
  • 570
  • 571
  • 572
  • 573
  • 574
  • 575
  • 576
  • 577
  • 578
  • 579
  • 580
  • 581
  • 582
  • 583
  • 584
  • 585
  • 586
  • 587
  • 588
  • 589
  • 590
  • 591
  • 592
  • 593
  • 594
  • 595
  • 596
  • 597
  • 598
  • 599
  • 600
  • 601
  • 602
  • 603
  • 604
  • 605
  • 606
  • 607
  • 608
  • 609
  • 610
  • 611
  • 612
  • 613
  • 614
  • 615
  • 616
  • 617
  • 618
  • 619
  • 620
  • 621
  • 622
  • 623
  • 624
  • 625
  • 626

Section 7.
Installation
X = 1000 V
S
/V
X
where,
V
S
= measured bridge-output voltage
V
X
= excitation voltage
or,
X = 1000 (R
S
/(R
S
+R
1
) – R
3
/(R
2
+R
3
)).
With reference to figure
PT100 in Four-Wire Full-Bridge
(p. 245),
the resistance of
the PRT (R
S
) is calculated as:
R
S
= R
1
X' / (1-X')
where
X' = X / 1000 + R
3
/(R
2
+R
3
)
Thus, to obtain the value R
S
/R
0
, (R
0
= R
S
@ 0 °C) for the temperature calculating
instruction
PRTCalc()
, the multiplier and offset used in
BRFull()
are 0.001 and
R
3
/(R
2
+R
3
), respectively.
The multiplier (R
f
) used in the bridge transform
algorithm (X = R
f
(X/(X-1)) to obtain R
S
/R
0
is R
1
/R
0
or (5000/100 = 50).
The application requires control of the temperature bath at 50 °C with as little
variation as possible.
High resolution is desired so the control algorithm will
respond to minute changes in temperature.
The highest resolution is obtained
when the temperature range results in an output-voltage (V
S
) range, which fills the
measurement range selected in
BRFull()
.
The full-bridge configuration allows
the bridge to be balanced (V
S
= 0 V) at or near the control temperature.
Thus, the
output voltage can
go both positive and negative as the bath temperature changes,
allowing the full use of the measurement range.
T
he resistance of the PRT is approximately 119.7 Ω at 50 °C.
The 120 Ω fixed
resistor balances the bridge at approximately 51 °C.
The output voltage is:
V
S
= V
X
[R
S
/(R
S
+R
1
) – R
3
/(R
2
+R
3
)]
= V
X
[R
S
/(R
S
+5000) – 0.023438]
The temperature range to be covered is 50 °C ±10 °C.
At 40 °C, R
S
is
approximately 115.8 Ω, or:
V
S
= –802.24E–6 V
X
.
Even with an excitation voltage (V
X
) equal to
mV, V
S
can be measured on the ±
mV scale (40 °C / 115.8 Ω /
mV, 60 °C / 123.6 Ω /
mV).
There is a change of
approximately
mV from the output at 40°C to the output at 51 °C, or
µV / °C.
With a resolution of 0.33 µV on the ± mV range, this means that the temperature
resolution is 0.0009 °C.
The ±5 ppm per °C temperature coefficient of the fixed resistors was chosen
because the ±0.01% accuracy tolerance would hold over the desired temperature
range.
244