Campbell Scientific CR6 CR6 Measurement and Control System - Page 361

Vibrating-Wire Temperature Measurement

Page 361 highlights

Section 8. Operation Vibrating-Wire Temperature Measurement Temperature data from the two-wire RTD that is often embedded in vibratingwire sensors is used to correct measurement errors caused by thermal expansion and contraction of the sensor body. RTD resistance changes with sensor temperature. RTD leads connect to the U terminal pair numerically following the U terminal pair to which the vibrating-wire coil leads are connected. The RTD measurement is enabled in the VibratingWire() instruction with an argument other than zero in the ThermFnotch parameter . When the RTD measurement is made, the odd-numbered terminal of the pair applies excitation. An internal resistor is automatically switched into the circuit to complete the measurement bridge. For thermistor RTDs, temperature can be calculated automatically by inputing arguments other than 0 in the A, B, C parameters in the VibratingWire() instruction. The values to input are the Steinhart-Hart coefficients supplied by the sensor manufacturer. For sensors incorporating a PRT, inputing 0 as the argument for A, B, C will result in the output of resistance expressed as ohms. Converting Thermistor Resistance to Temperature The Steinhart-Hart equation is expressed as, T = 1 / (A + B • LN(R) + C • (LN(R))^3) - 273.15 Where T is the temperature of the thermistor, A, B, and C are coefficients, and R is the resistance of the thermistor. Note Coefficients for Steinhart-Hart are specific to the thermistor in the sensor. Obtain coefficients from the sensor manufacturer. For example, if the coefficients for Steinhart-Hart are provided from the manufacturer as follows, A = 1.4051E-03 B = 2.369E-04 C = 1.019E-07 the equation for converting the resistance measurement to degrees Celsius is: T = 1 / (1.4051E-03 + 2.369E-04 • LN(R) + 1.019E-7 • (LN(R))^3) - 273.15 Where R is the measured resistance. If the measured resistance is 2221 Ω, the equation is, T = 1/(1.4051E-03 + 2.369E-04 • LN(2221) + 1.019E-7 • (LN(2221))^3) - 273.15 T = 31.98 °C The CRBasic example Vspect Vibrating-Wire Measurement (p. 364) lists code that performs this conversion. Temperature-Measurement Error Accuracy of the temperature measurement is a function of: • Accuracy of the voltage measurement • Precision of the bridge resistors 361

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
  • 374
  • 375
  • 376
  • 377
  • 378
  • 379
  • 380
  • 381
  • 382
  • 383
  • 384
  • 385
  • 386
  • 387
  • 388
  • 389
  • 390
  • 391
  • 392
  • 393
  • 394
  • 395
  • 396
  • 397
  • 398
  • 399
  • 400
  • 401
  • 402
  • 403
  • 404
  • 405
  • 406
  • 407
  • 408
  • 409
  • 410
  • 411
  • 412
  • 413
  • 414
  • 415
  • 416
  • 417
  • 418
  • 419
  • 420
  • 421
  • 422
  • 423
  • 424
  • 425
  • 426
  • 427
  • 428
  • 429
  • 430
  • 431
  • 432
  • 433
  • 434
  • 435
  • 436
  • 437
  • 438
  • 439
  • 440
  • 441
  • 442
  • 443
  • 444
  • 445
  • 446
  • 447
  • 448
  • 449
  • 450
  • 451
  • 452
  • 453
  • 454
  • 455
  • 456
  • 457
  • 458
  • 459
  • 460
  • 461
  • 462
  • 463
  • 464
  • 465
  • 466
  • 467
  • 468
  • 469
  • 470
  • 471
  • 472
  • 473
  • 474
  • 475
  • 476
  • 477
  • 478
  • 479
  • 480
  • 481
  • 482
  • 483
  • 484
  • 485
  • 486
  • 487
  • 488
  • 489
  • 490
  • 491
  • 492
  • 493
  • 494
  • 495
  • 496
  • 497
  • 498
  • 499
  • 500
  • 501
  • 502
  • 503
  • 504
  • 505
  • 506
  • 507
  • 508
  • 509
  • 510
  • 511
  • 512
  • 513
  • 514
  • 515
  • 516
  • 517
  • 518
  • 519
  • 520
  • 521
  • 522
  • 523
  • 524
  • 525
  • 526
  • 527
  • 528
  • 529
  • 530
  • 531
  • 532
  • 533
  • 534
  • 535
  • 536
  • 537
  • 538
  • 539
  • 540
  • 541
  • 542
  • 543
  • 544
  • 545
  • 546
  • 547
  • 548
  • 549
  • 550
  • 551
  • 552
  • 553
  • 554
  • 555
  • 556
  • 557
  • 558
  • 559
  • 560
  • 561
  • 562
  • 563
  • 564
  • 565
  • 566
  • 567
  • 568
  • 569
  • 570
  • 571
  • 572
  • 573
  • 574
  • 575
  • 576
  • 577
  • 578
  • 579
  • 580
  • 581
  • 582
  • 583
  • 584
  • 585
  • 586
  • 587
  • 588
  • 589
  • 590
  • 591
  • 592
  • 593
  • 594
  • 595
  • 596
  • 597
  • 598
  • 599
  • 600
  • 601
  • 602
  • 603
  • 604
  • 605
  • 606
  • 607
  • 608
  • 609
  • 610
  • 611
  • 612
  • 613
  • 614
  • 615
  • 616
  • 617
  • 618
  • 619
  • 620
  • 621
  • 622
  • 623
  • 624
  • 625
  • 626

Section 8.
Operation
Vibrating-Wire Temperature Measurement
Temperature data from the two-wire RTD that is often embedded in vibrating-
wire sensors is used to correct measurement errors caused by thermal expansion
and contraction of the sensor body.
RTD resistance changes with sensor
temperature.
RTD leads connect to the
U
terminal pair numerically following the
U
terminal pair to which the vibrating-wire coil leads are connected.
The RTD measurement is enabled in the
VibratingWire()
instruction with an
argument other than zero in the
ThermFnotch
parameter .
When the RTD
measurement is made, the odd-numbered terminal of the pair applies excitation.
An internal resistor is automatically switched into the circuit to complete the
measurement bridge.
For thermistor RTDs, temperature can be calculated
automatically by inputing arguments other than
0
in the
A
,
B
,
C
parameters in the
VibratingWire()
instruction.
The values to input are the Steinhart-Hart
coefficients supplied by the sensor manufacturer.
For sensors incorporating a
PRT, inputing
0
as the argument for
A
,
B
,
C
will result in the output of resistance
expressed as ohms.
Converting Thermistor Resistance to Temperature
The Steinhart-Hart equation is expressed as,
T = 1 / (A + B • LN(R) + C • (LN(R))^3)
– 273.15
Where
T
is the temperature of the thermistor,
A
,
B
, and
C
are coefficients, and
R
is
the resistance of the thermistor.
Note
Coefficients for Steinhart-Hart are specific to the thermistor in the sensor.
Obtain coefficients from the sensor manufacturer.
For example, if the coefficients for Steinhart-Hart are provided from the
manufacturer as follows,
A
= 1.4051E–03
B
= 2.369E–04
C
= 1.019E–07
the equation for converting the resistance measurement to degrees Celsius is:
T = 1 / (1.4051E–03 + 2.369E–
04 • LN(R) + 1.019E
7 • (LN(R))^3)
273.15
Where R is the measured resistance.
If the measured resistance is 2221 Ω, the
equation is,
T = 1/(1.4051E–03 + 2.369E–
04 • LN(2221) + 1.019E
7 • (LN(2221))^3)
273.15
T = 31.98 °C
The CRBasic example
Vspect Vibrating-Wire Measurement
(p. 364)
lists code that
performs this conversion.
Temperature-Measurement Error
Accuracy of the temperature measurement is a function of:
Accuracy of the voltage measurement
Precision of the bridge resistors
361