Texas Instruments TI-92 Owners Manual - Page 522

solvex^2+y^2=r^2 and, r^2+y^2=r^2, {x, y}, and y, y, z}, and z=@1, solvex, y=1 and, y=sinz, sinz+1, {y

Page 522 highlights

If all of the equations are polynomials and if you do NOT specify any initial guesses, solve() uses the lexical Gröbner/Buchberger elimination method to attempt to determine all real solutions. For example, suppose you have a circle of radius r at the origin and another circle of radius r centered where the first circle crosses the positive x-axis. Use solve() to find the intersections. As illustrated by r in the example to the right, simultaneous polynomial equations can have extra variables that have no values, but represent given numeric values that could be substituted later. solve(x^2+y^2=r^2 and (xì r)^2+y^2=r^2,{x,y}) ¸ r 3ør x= 2 and y= 2 or x= r 2 and y= ë 3ør 2 You can also (or instead) include solution variables that do not appear in the equations. For example, you can include z as a solution variable to extend the previous example to two parallel intersecting cylinders of radius r. The cylinder solutions illustrate how families of solutions might contain arbitrary constants of the form @k, where k is an integer suffix from 1 through 255. The suffix resets to 1 when you use ClrHome or ƒ 8:Clear Home. solve(x^2+y^2=r^2 and (xì r)^2+y^2=r^2,{x,y,z}) ¸ x= r 2 and y= 3ør 2 and z=@1 r ë 3ør or x= 2 and y= 2 and z=@1 For polynomial systems, computation time or memory exhaustion may depend strongly on the order in which you list solution variables. If your initial choice exhausts memory or your patience, try rearranging the variables in the equations and/or varOrGuess list. If you do not include any guesses and if any equation is non-polynomial in any variable but all equations are linear in the solution variables, solve() uses Gaussian elimination to attempt to determine all real solutions. solve(x+e^(z)ù y=1 and xì y=sin(z),{x,y}) ¸ ezøsin(z)+1 ë (sin(z)ì 1 x= and y= ez +1 ez +1 If a system is neither polynomial in all of its variables nor linear in its solution variables, solve() determines at most one solution using an approximate iterative method. To do so, the number of solution variables must equal the number of equations, and all other variables in the equations must simplify to numbers. solve(e^(z)ù y=1 and ë y=sin(z),{y,z}) ¸ y=.041... and z=3.183... Appendix A: Functions and Instructions 505

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
  • 374
  • 375
  • 376
  • 377
  • 378
  • 379
  • 380
  • 381
  • 382
  • 383
  • 384
  • 385
  • 386
  • 387
  • 388
  • 389
  • 390
  • 391
  • 392
  • 393
  • 394
  • 395
  • 396
  • 397
  • 398
  • 399
  • 400
  • 401
  • 402
  • 403
  • 404
  • 405
  • 406
  • 407
  • 408
  • 409
  • 410
  • 411
  • 412
  • 413
  • 414
  • 415
  • 416
  • 417
  • 418
  • 419
  • 420
  • 421
  • 422
  • 423
  • 424
  • 425
  • 426
  • 427
  • 428
  • 429
  • 430
  • 431
  • 432
  • 433
  • 434
  • 435
  • 436
  • 437
  • 438
  • 439
  • 440
  • 441
  • 442
  • 443
  • 444
  • 445
  • 446
  • 447
  • 448
  • 449
  • 450
  • 451
  • 452
  • 453
  • 454
  • 455
  • 456
  • 457
  • 458
  • 459
  • 460
  • 461
  • 462
  • 463
  • 464
  • 465
  • 466
  • 467
  • 468
  • 469
  • 470
  • 471
  • 472
  • 473
  • 474
  • 475
  • 476
  • 477
  • 478
  • 479
  • 480
  • 481
  • 482
  • 483
  • 484
  • 485
  • 486
  • 487
  • 488
  • 489
  • 490
  • 491
  • 492
  • 493
  • 494
  • 495
  • 496
  • 497
  • 498
  • 499
  • 500
  • 501
  • 502
  • 503
  • 504
  • 505
  • 506
  • 507
  • 508
  • 509
  • 510
  • 511
  • 512
  • 513
  • 514
  • 515
  • 516
  • 517
  • 518
  • 519
  • 520
  • 521
  • 522
  • 523
  • 524
  • 525
  • 526
  • 527
  • 528
  • 529
  • 530
  • 531
  • 532
  • 533
  • 534
  • 535
  • 536
  • 537
  • 538
  • 539
  • 540
  • 541
  • 542
  • 543
  • 544
  • 545
  • 546
  • 547
  • 548
  • 549
  • 550
  • 551
  • 552
  • 553
  • 554
  • 555
  • 556
  • 557
  • 558
  • 559
  • 560
  • 561
  • 562
  • 563
  • 564
  • 565
  • 566
  • 567
  • 568
  • 569
  • 570
  • 571
  • 572
  • 573
  • 574
  • 575
  • 576
  • 577
  • 578
  • 579
  • 580
  • 581
  • 582
  • 583
  • 584
  • 585
  • 586
  • 587
  • 588
  • 589
  • 590
  • 591
  • 592
  • 593
  • 594
  • 595
  • 596
  • 597
  • 598
  • 599
  • 600
  • 601
  • 602
  • 603
  • 604
  • 605
  • 606
  • 607
  • 608
  • 609
  • 610
  • 611
  • 612
  • 613
  • 614
  • 615
  • 616
  • 617
  • 618
  • 619
  • 620
  • 621
  • 622
  • 623

Appendix A: Functions and Instructions
505
If all of the equations are polynomials and if
you do NOT specify any initial guesses
,
solve()
uses the lexical Gröbner/Buchberger
elimination method to attempt to determine
all
real solutions.
For example, suppose you have a circle of
radius r at the origin and another circle of
radius r centered where the first circle
crosses the positive x-axis. Use
solve()
to find
the intersections.
As illustrated by r in the example to the right,
simultaneous
polynomial
equations can have
extra variables that have no values
, but
represent given numeric values that could be
substituted later.
solve(x^2+y^2=r^2 and
(x
ì
r)^2+y^2=r^2,{x,y})
¸
x=
r
2
and y=
3
ø
r
2
or x=
r
2
and y=
ë
3
ø
r
2
You can also (or instead) include solution
variables that do not appear in the equations
.
For example, you can include z as a solution
variable to extend the previous example to
two parallel intersecting cylinders of radius r.
The cylinder solutions illustrate how families
of solutions might contain arbitrary constants
of the form @
k
, where
k
is an integer suffix
from 1 through 255. The suffix resets to 1
when you use
ClrHome
or
ƒ
8:Clear Home
.
For polynomial systems, computation time or
memory exhaustion may depend strongly on
the order in which you list solution variables.
If your initial choice exhausts memory or
your patience, try rearranging the variables in
the equations and/or
varOrGuess
list.
solve(x^2+y^2=r^2 and
(x
ì
r)^2+y^2=r^2,{x,y,z})
¸
x=
r
2
and y=
3
ø
r
2
and z=@1
or x=
r
2
and y=
ë
3
ø
r
2
and z=@1
If you do not include any guesses and if any
equation is non-polynomial in any variable
but all equations are linear in the solution
variables
,
solve()
uses Gaussian elimination
to attempt to determine all real solutions.
solve(x+
e
^(z)
ù
y=1 and
x
ì
y=sin(z),{x,y})
¸
x=
e
z
ø
sin(z)+1
e
z
+1
and y=
ë
(sin(z)
ì
1
e
z
+1
If a system is neither polynomial in all of its
variables nor linear in its solution variables
,
solve()
determines at most one solution using
an approximate iterative method. To do so,
the number of solution variables must equal
the number of equations, and all other
variables in the equations must simplify to
numbers.
solve(
e
^(z)
ù
y=1 and
ë
y=sin(z),{y,z})
¸
y=.041… and z=3.183…