Campbell Scientific CR1000KD CR800 and CR850 Measurement and Control Systems - Page 302

Pulse Measurement Tips

Page 302 highlights

Section 8. Operation 8.1.5.2.2 Low-Frequency Mode Low-frequency mode enables edge timing and measurement of period (not period averaging) and frequency. For information on period averaging, see Period Averaging (p. 307). Edge Timing (C1 - C4) Time between pulse edges can be measured. Results can be expressed in terms of microseconds or Hertz. To read more concerning edge timing, refer to CRBasic Editor Help for the TimerIO() instruction. Edge-timing resolution is approximately . Edge Timing (C1 - C4) Open collector (bipolar transistors) or open drain (MOSFET) sensors are typically measured as frequency sensors. Channels C1 - C4 can be conditioned for open collector or open drain with an external pull-up resistor as shown in figure Using a Pull-up Resistor on Digital I/O Channels C1 - C4 (p. 303). The pull-up resistor counteracts an internal 100-kΩ pull-down resistor, allowing inputs to be pulled to > 3.8 V for reliable measurements. 8.1.5.3 Pulse Measurement Tips • The PulseCount() instruction, whether measuring pulse inputs on pulse channels (P1 through P2) or on digital I/O channels (C1 - C4), uses dedicated 24-bit counters to accumulate all counts over the user-specified scan interval. The resolution of pulse counters is one count or 1 Hz. Counters are read at the beginning of each scan and then cleared. Counters will overflow if accumulated counts exceed 16,777,216, resulting in erroneous measurements. • Counts are the preferred PulseCount() output option when measuring the number of tips from a tipping bucket rain gage or the number of times a door opens. Many pulse output sensors, such as anemometers and flow meters, are calibrated in terms of frequency (Hz (p. 433) ) so are usually measured using the PulseCount() frequency option. • Accuracy of PulseCount() is limited by a small scan-interval error of ±(3 ppm of scan interval + 10 µs), plus the measurement resolution error of ±1 / (scan interval). The sum is essentially ±1 / (scan interval). • Use the LLAC4 (p. 538) module to convert non-TTL level signals, including low-level ac signals, to TTL levels for input into digital I/O channels C1 - C4. • When digital I/O channels C1 - C4 measure switch-closure inputs, pull-up resistors may be required. Figure Connecting Switch Closures to Digital I/O (p. 303) show how pull-up resistors can be incorporated into a wiring scheme. • As shown in figure Connecting Switch Closures to Digital I/O (p. 303), digital I/O inputs, with regard to the 6.2-V Zener diode, have an input resistance of 100 kΩ with input voltages < 6.2 Vdc. For input voltages ≥ 6.2 Vdc, the inputs have an input resistance of only 220 Ω. 302

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
  • 374
  • 375
  • 376
  • 377
  • 378
  • 379
  • 380
  • 381
  • 382
  • 383
  • 384
  • 385
  • 386
  • 387
  • 388
  • 389
  • 390
  • 391
  • 392
  • 393
  • 394
  • 395
  • 396
  • 397
  • 398
  • 399
  • 400
  • 401
  • 402
  • 403
  • 404
  • 405
  • 406
  • 407
  • 408
  • 409
  • 410
  • 411
  • 412
  • 413
  • 414
  • 415
  • 416
  • 417
  • 418
  • 419
  • 420
  • 421
  • 422
  • 423
  • 424
  • 425
  • 426
  • 427
  • 428
  • 429
  • 430
  • 431
  • 432
  • 433
  • 434
  • 435
  • 436
  • 437
  • 438
  • 439
  • 440
  • 441
  • 442
  • 443
  • 444
  • 445
  • 446
  • 447
  • 448
  • 449
  • 450
  • 451
  • 452
  • 453
  • 454
  • 455
  • 456
  • 457
  • 458
  • 459
  • 460
  • 461
  • 462
  • 463
  • 464
  • 465
  • 466
  • 467
  • 468
  • 469
  • 470
  • 471
  • 472
  • 473
  • 474
  • 475
  • 476
  • 477
  • 478
  • 479
  • 480
  • 481
  • 482
  • 483
  • 484
  • 485
  • 486
  • 487
  • 488
  • 489
  • 490
  • 491
  • 492
  • 493
  • 494
  • 495
  • 496
  • 497
  • 498
  • 499
  • 500
  • 501
  • 502
  • 503
  • 504
  • 505
  • 506
  • 507
  • 508
  • 509
  • 510
  • 511
  • 512
  • 513
  • 514
  • 515
  • 516
  • 517
  • 518
  • 519
  • 520
  • 521
  • 522
  • 523
  • 524
  • 525
  • 526
  • 527
  • 528
  • 529
  • 530
  • 531
  • 532
  • 533
  • 534
  • 535
  • 536
  • 537
  • 538
  • 539
  • 540
  • 541
  • 542
  • 543
  • 544
  • 545
  • 546
  • 547
  • 548
  • 549
  • 550
  • 551
  • 552
  • 553
  • 554
  • 555
  • 556
  • 557
  • 558
  • 559
  • 560
  • 561
  • 562
  • 563
  • 564
  • 565
  • 566

Section 8.
Operation
302
8.1.5.2.2 Low-Frequency Mode
Low-frequency mode enables edge timing and measurement of period (not period
averaging) and frequency.
For information on period averaging, see
Period
Averaging
(p. 307).
Edge Timing (C1 - C4)
Time between pulse edges can be measured.
Results can be expressed in terms of
microseconds or Hertz.
To read more concerning edge timing, refer to
CRBasic
Editor Help
for the
TimerIO()
instruction.
Edge-timing resolution is
approximately .
Edge Timing (C1 - C4)
Open collector (bipolar transistors) or open drain (MOSFET) sensors are typically
measured as frequency sensors.
Channels
C1
C4
can be conditioned for open
collector or open drain with an external pull-up resistor as shown in figure
Using
a Pull-up Resistor on Digital I/O Channels C1 - C4
(p. 303).
The pull-up resistor
counteracts an internal 100-k
pull-down resistor, allowing inputs to be pulled to
> 3.8 V for reliable measurements.
8.1.5.3 Pulse Measurement Tips
The
PulseCount()
instruction, whether measuring pulse inputs on pulse
channels (
P1
through
P2
) or on digital I/O channels (
C1
C4
), uses
dedicated 24-bit counters to accumulate all counts over the user-specified
scan interval.
The resolution of pulse counters is one count or 1 Hz.
Counters are read at the beginning of each scan and then cleared.
Counters
will overflow if accumulated counts exceed 16,777,216, resulting in
erroneous measurements.
Counts are the preferred
PulseCount()
output option when measuring the
number of tips from a tipping bucket rain gage or the number of times a door
opens.
Many pulse output sensors, such as anemometers and flow meters, are
calibrated in terms of frequency (
Hz
(p. 433)
) so are usually measured using the
PulseCount()
frequency option.
Accuracy of
PulseCount()
is limited by a small scan-interval error of ±(3
ppm of scan interval + 10 μs), plus the measurement resolution error of ±1 /
(scan interval).
The sum is essentially ±1 / (scan interval).
Use the
LLAC4
(p. 538)
module to convert non-TTL level signals, including
low-level ac signals, to TTL levels for input into digital I/O channels
C1
C4
.
When digital I/O channels
C1
C4
measure switch-closure inputs, pull-up
resistors may be required.
Figure
Connecting Switch Closures to Digital I/O
(p. 303)
show how pull-up resistors can be incorporated into a wiring scheme.
As shown in figure
Connecting Switch Closures to Digital I/O
(p. 303),
digital
I/O inputs, with regard to the 6.2-V Zener diode, have an input resistance of
100 k
with input voltages < 6.2 Vdc.
For input voltages
6.2 Vdc, the
inputs have an input resistance of only 220
.