HP GbE2c HP GbE2c Layer 2/3 Ethernet Blade Switch for c-Class BladeSystem User - Page 12

TFTP support, Store and forward switching scheme, BOOTP, RADIUS - firmware upgrade

Page 12 highlights

bandwidth that is a multiple of the bandwidth of a single link. It also improves reliability since load balancing is automatically applied to the ports in the trunked group. A link failure within the group causes the network traffic to be directed to the remaining links in the group. TFTP support TFTP support allows the switch firmware to be upgraded by downloading a new firmware file from a TFTP server to the switch. Firmware images of the switch are also uploaded to a TFTP server, a configuration file is downloaded into a switch from a TFTP server, and configuration settings are saved to the TFTP server. Store and forward switching scheme The switch provides a store and forward switching scheme that allows each packet to be buffered (stored) before it is forwarded to its destination. While this method creates latency, it improves reliability in a heavily used switch. Packets that cannot be forwarded are saved immediately, rather than dropped, so that packets behind them are less likely to be dropped in periods of heavy usage. BOOTP By default, the switch is configured to obtain an IP address from a BOOTP server during the boot process. The IP settings are also manually configured by means of the serial interface. The IP settings are configurable from the browser-based interface, but because the connection is based on an IP address for these interfaces, users will have to reconnect with the newly assigned IP address. NTP The switch maintains the current date and time. This information displays on the management interfaces and is used to record the date and time of switch events. Current date and time information are manually set on the switch or are obtained through NTP. NTP allows the switch to send a request to a primary NTP server in each polling period asking for GMT. RADIUS The switch supports the RADIUS method to authenticate and authorize remote administrators for managing the switch. This method is based on a client/server model. The RAS, the switch, is a client to the back-end database server. A remote user (the remote administrator) interacts only with the RAS, not the back-end server and database. RADIUS authentication consists of: • A protocol with a frame format that utilizes UDP over IP, based on RFC 2138 and 2866 • A centralized server that stores all the user authorization information • A client, in this case, the switch The switch, acting as the RADIUS client, communicates to the RADIUS server to authenticate and authorize a remote administrator using the protocol definitions specified in RFC 2138 and 2866. Transactions between the client and the RADIUS server are authenticated using a shared key that is not sent over the network. In addition, the remote administrator passwords are sent encrypted between the RADIUS client (the switch) and the back-end RADIUS server. The benefits of using RADIUS are: • Authentication of remote administrators Introduction 12

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60

Introduction 12
bandwidth that is a multiple of the bandwidth of a single link. It also improves reliability since load
balancing is automatically applied to the ports in the trunked group. A link failure within the group causes
the network traffic to be directed to the remaining links in the group.
TFTP support
TFTP support allows the switch firmware to be upgraded by downloading a new firmware file from a TFTP
server to the switch. Firmware images of the switch are also uploaded to a TFTP server, a configuration
file is downloaded into a switch from a TFTP server, and configuration settings are saved to the TFTP
server.
Store and forward switching scheme
The switch provides a store and forward switching scheme that allows each packet to be buffered (stored)
before it is forwarded to its destination. While this method creates latency, it improves reliability in a
heavily used switch. Packets that cannot be forwarded are saved immediately, rather than dropped, so
that packets behind them are less likely to be dropped in periods of heavy usage.
BOOTP
By default, the switch is configured to obtain an IP address from a BOOTP server during the boot process.
The IP settings are also manually configured by means of the serial interface. The IP settings are
configurable from the browser-based interface, but because the connection is based on an IP address for
these interfaces, users will have to reconnect with the newly assigned IP address.
NTP
The switch maintains the current date and time. This information displays on the management interfaces
and is used to record the date and time of switch events. Current date and time information are manually
set on the switch or are obtained through NTP. NTP allows the switch to send a request to a primary NTP
server in each polling period asking for GMT.
RADIUS
The switch supports the RADIUS method to authenticate and authorize remote administrators for managing
the switch. This method is based on a client/server model. The RAS, the switch, is a client to the back-end
database server. A remote user (the remote administrator) interacts only with the RAS, not the back-end
server and database.
RADIUS authentication consists of:
A protocol with a frame format that utilizes UDP over IP, based on RFC 2138 and 2866
A centralized server that stores all the user authorization information
A client, in this case, the switch
The switch, acting as the RADIUS client, communicates to the RADIUS server to authenticate and authorize
a remote administrator using the protocol definitions specified in RFC 2138 and 2866. Transactions
between the client and the RADIUS server are authenticated using a shared key that is not sent over the
network. In addition, the remote administrator passwords are sent encrypted between the RADIUS client
(the switch) and the back-end RADIUS server.
The benefits of using RADIUS are:
Authentication of remote administrators