HP 6125G HP 6125G & 6125G/XG Blade Switches IP Multicast Configuration - Page 300

IPv6 PIM-SM overview, Assert mechanism

Page 300 highlights

Figure 82 Assert mechanism As shown in Figure 82, after Router A and Router B receive an (S, G) IPv6 multicast packet from the upstream node, they both forward the packet to the local subnet. As a result, the downstream node Router C receives two identical multicast packets, and both Router A and Router B, on their own downstream interface, receive a duplicate IPv6 multicast packet that the other has forwarded. After detecting this condition, both routers send an assert message to all IPv6 PIM routers on the local subnet through the downstream interface that received the packet. The assert message contains the multicast source address (S), the multicast group address (G), and the preference and metric of the IPv6 unicast route/IPv6 MBGP route/IPv6 multicast static route to the source. By comparing these parameters, either Router A or Router B becomes the unique forwarder of the subsequent (S, G) IPv6 multicast packets on the multi-access subnet. The comparison process is as follows: 1. The router with a higher preference to the source wins. 2. If both routers have the same preference to the source, the router with a smaller metric to the source wins. 3. If a tie exists in the route metric to the source, the router with a higher IPv6 link-local address of the downstream interface wins. IPv6 PIM-SM overview IPv6 PIM-DM uses the flood-and-prune principle to build SPTs for IPv6 multicast data distribution. Although an SPT has the shortest path, it is built with a low efficiency. Therefore the PIM-DM mode is not suitable for large-sized and medium-sized networks. IPv6 PIM-SM is a type of sparse-mode IPv6 multicast protocol. It uses the pull mode for IPv6 multicast forwarding, and is suitable for large-sized and medium-sized networks with sparsely and widely distributed IPv6 multicast group members. The basic implementation of IPv6 PIM-SM is as follows: • IPv6 PIM-SM assumes that no hosts need to receive IPv6 multicast data. In the IPv6 PIM-SM mode, routers must specifically request a particular IPv6 multicast stream before the data is forwarded to them. The core task for IPv6 PIM-SM to implement IPv6 multicast forwarding will build and maintain rendezvous point trees (RPTs). An RPT is rooted at a router in the IPv6 PIM domain as the common node, or rendezvous point (RP), through which the IPv6 multicast data travels along the RPT and reaches the receivers. • When a receiver is interested in the IPv6 multicast data addressed to a specific IPv6 multicast group, the router connected to this receiver sends a join message to the RP corresponding to that IPv6 289

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
  • 374
  • 375
  • 376
  • 377
  • 378
  • 379

289
Figure 82
Assert mechanism
As shown in
Figure 82
, after Router A and Router B receive an (S, G) IPv6 multicast packet from the
upstream node, they both forward the packet to the local subnet. As a result, the downstream node Router
C receives two identical multicast packets, and both Router A and Router B, on their own downstream
interface, receive a duplicate IPv6 multicast packet that the other has forwarded. After detecting this
condition, both routers send an assert message to all IPv6 PIM routers on the local subnet through the
downstream interface that received the packet. The assert message contains the multicast source address
(S), the multicast group address (G), and the preference and metric of the IPv6 unicast route/IPv6 MBGP
route/IPv6 multicast static route to the source. By comparing these parameters, either Router A or Router
B becomes the unique forwarder of the subsequent (S, G) IPv6 multicast packets on the multi-access
subnet. The comparison process is as follows:
1.
The router with a higher preference to the source wins.
2.
If both routers have the same preference to the source, the router with a smaller metric to the source
wins.
3.
If a tie exists in the route metric to the source, the router with a higher IPv6 link-local address of the
downstream interface wins.
IPv6 PIM-SM overview
IPv6 PIM-DM uses the flood-and-prune principle to build SPTs for IPv6 multicast data distribution.
Although an SPT has the shortest path, it is built with a low efficiency. Therefore the PIM-DM mode is not
suitable for large-sized and medium-sized networks.
IPv6 PIM-SM is a type of sparse-mode IPv6 multicast protocol. It uses the pull mode for IPv6 multicast
forwarding, and is suitable for large-sized and medium-sized networks with sparsely and widely
distributed IPv6 multicast group members.
The basic implementation of IPv6 PIM-SM is as follows:
IPv6 PIM-SM assumes that no hosts need to receive IPv6 multicast data. In the IPv6 PIM-SM mode,
routers must specifically request a particular IPv6 multicast stream before the data is forwarded to
them. The core task for IPv6 PIM-SM to implement IPv6 multicast forwarding will build and maintain
rendezvous point trees (RPTs). An RPT is rooted at a router in the IPv6 PIM domain as the common
node, or rendezvous point (RP), through which the IPv6 multicast data travels along the RPT and
reaches the receivers.
When a receiver is interested in the IPv6 multicast data addressed to a specific IPv6 multicast group,
the router connected to this receiver sends a join message to the RP corresponding to that IPv6