Intel E6320 Specification Update - Page 32

Access Which Wraps a 4-Gbyte Boundary in Code That Uses 32-Bit

Page 32 highlights

BJ38. FP Data Operand Pointer May Be Incorrectly Calculated After an FP Access Which Wraps a 4-Gbyte Boundary in Code That Uses 32-Bit Address Size in 64-bit Mode Problem: The FP (Floating Point) Data Operand Pointer is the effective address of the operand associated with the last non-control FP instruction executed by the processor. If an 80bit FP access (load or store) uses a 32-bit address size in 64-bit mode and the memory access wraps a 4-Gbyte boundary and the FP environment is subsequently saved, the value contained in the FP Data Operand Pointer may be incorrect. Implication: Due to this erratum, the FP Data Operand Pointer may be incorrect. Wrapping an 80-bit FP load around a 4-Gbyte boundary in this way is not a normal programming practice. Intel has not observed this erratum with any commercially available software. Workaround: If the FP Data Operand Pointer is used in a 64-bit operating system which may run code accessing 32-bit addresses, care must be taken to ensure that no 80-bit FP accesses are wrapped around a 4-Gbyte boundary. Status: For the steppings affected, see the Summary Tables of Changes. BJ39. Problem: FP Data Operand Pointer May Be Incorrectly Calculated After an FP Access Which Wraps a 64-Kbyte Boundary in 16-Bit Code The FP (Floating Point) Data Operand Pointer is the effective address of the operand associated with the last non-control FP instruction executed by the processor. If an 80bit FP access (load or store) occurs in a 16-bit mode other than protected mode (in which case the access will produce a segment limit violation), the memory access wraps a 64-Kbyte boundary, and the FP environment is subsequently saved, the value contained in the FP Data Operand Pointer may be incorrect. Implication: Due to this erratum, the FP Data Operand Pointer may be incorrect. Wrapping an 80-bit FP load around a segment boundary in this way is not a normal programming practice. Intel has not observed this erratum with any commercially available software. Workaround: If the FP Data Operand Pointer is used in an operating system which may run 16-bit FP code, care must be taken to ensure that no 80-bit FP accesses are wrapped around a 64-Kbyte boundary. Status: For the steppings affected, see the Summary Tables of Changes. BJ40. Spurious Interrupts May be Generated From the Intel® VT-d Remap Engine Problem: If software clears the F (Fault) bit 127 of the Fault Recording Register (FRCD_REG at offset 0x208 in Remap Engine BAR) by writing 1b through RW1C command (Read Write 1 to Clear) when the F bit is already clear then a spurious interrupt from Intel® VT-d (Intel® Virtualization Technology for Directed I/O) Remap Engine may be observed. Implication: Due to this erratum, spurious interrupts will occur from the Intel VT-d Remap Engine following RW1C clearing F bit. Workaround: None identified. Status: For the steppings affected, see the Summary Tables of Changes. 32 Specification Update

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64

32
Specification Update
BJ38.
FP Data Operand Pointer May Be Incorrectly Calculated After an FP
Access Which Wraps a 4-Gbyte Boundary in Code That Uses 32-Bit
Address Size in 64-bit Mode
Problem:
The FP (Floating Point) Data Operand Pointer is the effective address of the operand
associated with the last non-control FP instruction executed by the processor. If an 80-
bit FP access (load or store) uses a 32-bit address size in 64-bit mode and the memory
access wraps a 4-Gbyte boundary and the FP environment is subsequently saved, the
value contained in the FP Data Operand Pointer may be incorrect.
Implication:
Due to this erratum, the FP Data Operand Pointer may be incorrect. Wrapping an 80-bit
FP load around a 4-Gbyte boundary in this way is not a normal programming practice.
Intel has not observed this erratum with any commercially available software.
Workaround:
If the FP Data Operand Pointer is used in a 64-bit operating system which may run code
accessing 32-bit addresses, care must be taken to ensure that no 80-bit FP accesses
are wrapped around a 4-Gbyte boundary.
Status:
For the steppings affected, see the Summary Tables of Changes.
BJ39.
FP Data Operand Pointer May Be Incorrectly Calculated After an FP
Access Which Wraps a 64-Kbyte Boundary in 16-Bit Code
Problem:
The FP (Floating Point) Data Operand Pointer is the effective address of the operand
associated with the last non-control FP instruction executed by the processor. If an 80-
bit FP access (load or store) occurs in a 16-bit mode other than protected mode (in
which case the access will produce a segment limit violation), the memory access
wraps a 64-Kbyte boundary, and the FP environment is subsequently saved, the value
contained in the FP Data Operand Pointer may be incorrect.
Implication:
Due to this erratum, the FP Data Operand Pointer may be incorrect. Wrapping an 80-bit
FP load around a segment boundary in this way is not a normal programming practice.
Intel has not observed this erratum with any commercially available software.
Workaround:
If the FP Data Operand Pointer is used in an operating system which may run 16-bit FP
code, care must be taken to ensure that no 80-bit FP accesses are wrapped around a
64-Kbyte boundary.
Status:
For the steppings affected, see the Summary Tables of Changes.
BJ40.
Spurious Interrupts May be Generated From the Intel
®
VT-d Remap
Engine
Problem:
If software clears the F (Fault) bit 127 of the Fault Recording Register (FRCD_REG at
offset 0x208 in Remap Engine BAR) by writing 1b through RW1C command (Read Write
1 to Clear) when the F bit is already clear then a spurious interrupt from Intel
®
VT-d
(Intel
®
Virtualization Technology for Directed I/O) Remap Engine may be observed.
Implication:
Due to this erratum, spurious interrupts will occur from the Intel VT-d Remap Engine
following RW1C clearing F bit.
Workaround:
None identified.
Status:
For the steppings affected, see the Summary Tables of Changes.