Texas Instruments NS/CLM/1L1/B Reference Guide - Page 60

Catalog &gt, normCdf, normPdf

Page 60 highlights

norm( ) norm(Matrix) ⇒ expression Returns the Frobenius norm. normCdf() normCdf(lowBound,upBound[,m,s]) ⇒ number if lowBound and upBound are numbers, list if lowBound and upBound are lists Computes the normal distribution probability between lowBound and upBound for the specified m and s. For p(X  upBound), set lowBound = .9E999. normPdf() normPdf(XVal[,m,s]) ⇒ number if XVal is a number, list if XVal is a list Computes the probability density function for the normal distribution at a specified XVal value for the specified m and s. not not BooleanExpr ⇒ Boolean expression Returns true, false, or a simplified form of the argument. Catalog > Catalog > Catalog > Catalog > not Integer1 ⇒ integer In Hex base mode: Returns the one's complement of a real integer. Internally, Integer1 is converted to a signed, 64-bit binary number. The value of each bit is flipped (0 becomes 1, and vice versa) for the one's complement. Results are displayed according to the Base mode. Important: Zero, not the letter O. You can enter the integer in any number base. For a binary or hexadecimal entry, you must use the 0b or 0h prefix, respectively. Without a prefix, the integer is treated as decimal (base 10). In Bin base mode: If you enter a decimal integer that is too large for a signed, 64-bit binary form, a symmetric modulo operation is used to bring the value into the appropriate range. £ ¡ ¢ To see the entire result, press and then use and to move the cursor. Note: A binary entry can have up to 64 digits (not counting the 0b prefix). A hexadecimal entry can have up to 16 digits. 54 TI-Nspire™ Reference Guide

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130

54
TI-Nspire™ Reference Guide
norm()
Catalog >
norm(
Matrix
)
expression
Returns the Frobenius norm.
normCdf()
Catalog >
normCdf(
lowBound
,
upBound
[
,
m
,
s
]
)
number
if
lowBound
and
upBound
are numbers,
list
if
lowBound
and
upBound
are
lists
Computes the normal distribution probability between
lowBound
and
upBound
for the specified
m
and
s
.
For
p
(X
upBound
), set
lowBound
=
.
9
E
999.
normPdf()
Catalog >
normPdf(
XVal
[
,
m
,
s
]
)
number
if
XVal
is a number,
list
if
XVal
is a list
Computes the probability density function for the normal distribution
at a specified
XVal
value for the specified
m
and
s
.
not
Catalog >
not
BooleanExpr
Boolean expression
Returns true, false, or a simplified form of the argument.
not
Integer1
integer
Returns the one’s complement of a real integer. Internally,
Integer1
is
converted to a signed, 64-bit binary number. The value of each bit is
flipped (0 becomes 1, and vice versa) for the one’s complement.
Results are displayed according to the Base mode.
You can enter the integer in any number base. For a binary or
hexadecimal entry, you must use the 0b or 0h prefix, respectively.
Without a prefix, the integer is treated as decimal (base 10).
If you enter a decimal integer that is too large for a signed, 64-bit
binary form, a symmetric modulo operation is used to bring the value
into the appropriate range.
In Hex base mode:
In Bin base mode:
To see the entire result, press
£
and then use
¡
and
¢
to
move the cursor.
Note:
A binary entry can have up to 64 digits (not counting the
0b prefix). A hexadecimal entry can have up to 16 digits.
Important:
Zero, not the letter O.