Aastra OpenCom 510 User Guide - Page 122

Optimisation, 11.1.5 Call set-up, The OpenCom 510 uses a TOS byte Type of Service

Page 122 highlights

Voice over IP (VoIP) Fundamentals 11.1.4 Optimisation If you detect a large fluctuation in the propagation delay during measurement, this may also cause the voice quality to deteriorate. This may indicate a defective or overloaded line caused by bit-error or collision correction resulting from retransmission by the transmission procedure. An existing star-topology ethernet-network may uses a Hub as the central distributor of ethernet packets. A Hub repeats all ethernet packets received on all connected lines. This can cause substantial collisions and result in a high fluctuation in the propagation delay. If this is the case, use a modern switch component. Selective forwarding of ethernet packets ("Layer 2 switching") avoids collisions. Modern switch components also evaluate the TOS byte of IP packets, thereby providing the optimal prerequisites for VoIP telephony. Note: The OpenCom 510 uses a TOS byte ("Type of Service") value of 0xB8 for IP packets with VoIP data. This requests "Minimise Delay" and "Maximise Throughput" for IP packets marked with this value. 11.1.5 Call set-up Various IP-based protocols are used for system telephony via the Internet protocol ("IP") (see also Start Procedure starting on page 129). Multiple TCP connections are made between an IP telephone and OpenCom 510 for the telephone's start procedure, registration and signalling. Call data is directly exchanged between IP telephones using the RTP ("Realtime Transport Protocol") protocol. Channels on a Media Gateway (MGW) are allocated for making a telephone connection with an ordinary terminal or for dial tones. The MGW converts IP voice data into PCM data streams used with conventional telephony and vice versa. For this, IP voice data are exchanged between the IP telephone and the gateway. Tip: Switching between voice data channels may cause a slight delay in some circumstances. For example: when accepting a call on an IP telephone, headset users should wait about one second before answering. 120

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224

Voice over IP (VoIP)
Fundamentals
120
11.1.4 Optimisation
If you detect a large fluctuation in the propagation delay during measurement,
this may also cause the voice quality to deteriorate. This may indicate a defective
or overloaded line caused by bit-error or collision correction resulting from
retransmission by the transmission procedure.
An existing star-topology ethernet-network may uses a Hub as the central dis-
tributor of ethernet packets. A Hub repeats all ethernet packets received on all
connected lines. This can cause substantial collisions and result in a high fluctu-
ation in the propagation delay.
If this is the case, use a modern switch component. Selective forwarding of eth-
ernet packets (“Layer 2 switching”) avoids collisions. Modern switch components
also evaluate the TOS byte of IP packets, thereby providing the optimal prerequi-
sites for VoIP telephony.
Note:
The OpenCom 510 uses a TOS byte (“Type of Service”)
value of 0xB8 for IP packets with VoIP data. This requests
“Minimise Delay” and “Maximise Throughput” for IP packets
marked with this value.
11.1.5
Call set-up
Various IP-based protocols are used for system telephony via the Internet protocol
(“IP”) (see also
Start Procedure
starting on page 129). Multiple TCP connections are
made between an IP telephone and OpenCom 510 for the telephone’s start pro-
cedure, registration and signalling.
Call data is directly exchanged between IP telephones using the RTP (“Realtime
Transport Protocol”) protocol.
Channels on a
Media Gateway (MGW)
are allocated for making a telephone con-
nection with an ordinary terminal or for dial tones. The MGW converts IP voice
data into PCM data streams used with conventional telephony and vice versa. For
this, IP voice data are exchanged between the IP telephone and the gateway.
Tip:
Switching between voice data channels may cause a slight
delay in some circumstances. For example: when accepting a
call on an IP telephone, headset users should wait about one
second before answering.