Intel S1200RP Technical Product Specification - Page 49

Intel, Technology Support

Page 49 highlights

Intel® Server Board S1200V3RP Intel® Technology Support 5. Intel® Technology Support 5.1 Intel® Trusted Execution Technology The Intel® Xeon® Processor E3-1200 v3 Product Families support Intel® Trusted Execution Technology (Intel® TXT), which is a robust security environment designed to help protect against software-based attacks. Intel® Trusted Execution Technology integrates new security features and capabilities into the processor, chipset, and other platform components. When used in conjunction with Intel® Virtualization Technology and Intel® VT for Directed IO, with an active TPM, Intel® Trusted Execution Technology provides hardware-rooted trust for your virtual applications. 5.2 Intel® Virtualization Technology - Intel® VT-x/VT-d/VT-c Intel® Virtualization Technology consists of three components which are integrated and interrelated, but which address different areas of Virtualization.  Intel® Virtualization Technology (VT-x) is processor-related and provides capabilities needed to provide hardware assist to a Virtual Machine Monitor (VMM).  Intel® Virtualization Technology for Directed I/O (VT-d) is primarily concerned with virtualizing I/O efficiently in a VMM environment. This would generally be a chipset I/O feature, but in the Second Generation Intel® Core™ Processor Family there is an Integrated I/O unit embedded in the processor, and the IIO is also enabled for VT-d.  Intel® Virtualization Technology for Connectivity (VT-c) is primarily concerned I/O hardware assist features, complementary to but independent of VT-d. Intel® VT-x is designed to support multiple software environments sharing same hardware resources. Each software environment may consist of OS and applications. The Intel® Virtualization Technology features can be enabled or disabled in the BIOS setup. The default behavior is disabled. Intel® VT-d is supported jointly by the Intel® Xeon® Processor E3-1200 V3 Product Families and The Intel® C220 series chipset. Both support DMA remapping from inbound PCI Express* memory Guest Physical Address (GPA) to Host Physical Address (HPA). PCI devices are directly assigned to a virtual machine leading to a robust and efficient virtualization. The Intel® S1200V3RP Server Board Family BIOS publishes the DMAR table in the ACPI Tables. For each DMA Remapping Engine in the platform, one exact entry of DRHD (DMA Remapping Hardware Unit Definition) structure is added to the DMAR. The DRHD structure in turn contains a Device Scope structure that describes the PCI endpoints and/or sub-hierarchies handled by the particular DMA Remapping Engine. Similarly, there are reserved memory regions typically allocated by the BIOS at boot time. The BIOS marks these regions as either reserved or unavailable in the system address memory map reported to the OS. Some of these regions can be a target of DMA requests from one or more devices in the system, while the OS or executive is active. The BIOS reports each such memory region using exactly one RMRR (Reserved Memory Region Reporting) structure in the DMAR. Each RMRR has a Device Scope listing the devices in the system that can cause a DMA request to the region. Revision 1.0 37

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262

Intel® Server Board S1200V3RP
Intel® Technology Support
5.
Intel
®
Technology Support
5.1
Intel
®
Trusted Execution Technology
The Intel
®
Xeon
®
Processor E3-1200 v3 Product Families support Intel
®
Trusted Execution
Technology (Intel
®
TXT), which is a robust security environment designed to help protect
against software-based attacks. Intel
®
Trusted Execution Technology integrates new security
features and capabilities into the processor, chipset, and other platform components. When
used in conjunction with Intel
®
Virtualization Technology and Intel
®
VT for Directed IO, with an
active TPM, Intel
®
Trusted Execution Technology provides hardware-rooted trust for your virtual
applications.
5.2
Intel
®
Virtualization Technology – Intel
®
VT-x/VT-d/VT-c
Intel
®
Virtualization Technology consists of three components which are integrated and
interrelated, but which address different areas of Virtualization.
Intel
®
Virtualization Technology (VT-x) is processor-related and provides capabilities
needed to provide hardware assist to a Virtual Machine Monitor (VMM).
Intel
®
Virtualization Technology for Directed I/O (VT-d) is primarily concerned with
virtualizing I/O efficiently in a VMM environment. This would generally be a chipset I/O
feature, but in the Second Generation Intel
®
Core
Processor Family there is an
Integrated I/O unit embedded in the processor, and the IIO is also enabled for VT-d.
Intel
®
Virtualization Technology for Connectivity (VT-c) is primarily concerned I/O
hardware assist features, complementary to but independent of VT-d.
Intel
®
VT-x is designed to support multiple software environments sharing same hardware
resources. Each software environment may consist of OS and applications. The Intel
®
Virtualization Technology features can be enabled or disabled in the BIOS setup. The default
behavior is disabled.
Intel
®
VT-d is supported jointly by the Intel
®
Xeon
®
Processor E3-1200 V3 Product Families and
The Intel
®
C220 series chipset. Both support DMA remapping from inbound PCI Express*
memory Guest Physical Address (GPA) to Host Physical Address (HPA). PCI devices are
directly assigned to a virtual machine leading to a robust and efficient virtualization.
The Intel
®
S1200V3RP Server Board Family BIOS publishes the DMAR table in the ACPI
Tables. For each DMA Remapping Engine in the platform, one exact entry of DRHD (DMA
Remapping Hardware Unit Definition) structure is added to the DMAR. The DRHD structure in
turn contains a Device Scope structure that describes the PCI endpoints and/or sub-hierarchies
handled by the particular DMA Remapping Engine.
Similarly, there are reserved memory regions typically allocated by the BIOS at boot time. The
BIOS marks these regions as either reserved or unavailable in the system address memory
map reported to the OS. Some of these regions can be a target of DMA requests from one or
more devices in the system, while the OS or executive is active. The BIOS reports each such
memory region using exactly one RMRR (Reserved Memory Region Reporting) structure in the
DMAR. Each RMRR has a Device Scope listing the devices in the system that can cause a
DMA request to the region.
Revision 1.0
37