Campbell Scientific CR10 CR10 Measurement and Control - Page 127

Param.

Page 127 highlights

There is also an option to output the count as a frequency (i.e., counts/execution interual in seconds = Hz) as well as discard the result from an excessive interual. This allows the use of a conversion factor that is independent of the execution interval. The options of discarding counts from long interuals, pulse input type, and using a 16 bit counter are selected by the code entered for the 4th parameter (Table 9-2). NOTE: Allpulse count instructions must be kept in the same table. lf the Pulse Count lnstruction is contained within a subroutine, that subroutine must be called from Table 2. TABLE 9-2. Pulse Count Configuration Codes Gode 0 1 2 3 4 1X 2X Confiouration High frequency pulse Low levelAC Switch closure High frequency pulse, sixteen bit counter Low levelAC, sixteen bit counter Long interval data discarded Long interval data discarded, frequency (Hz) output PARAM. DATA NUMBER TYPE DESCRIPTION 01: 2 Repetitions 02: 2 Pulse channel number for first measurement 03: 2 Configuration code (from above table) o4; 4 Input location for first measurement 05: FP Multiplier 06: FP Otfset Input locations altered: 1 per measurement Intermediate storage locations altered: 1 for each repetition SECTION 9. INPUT/OUTPUT INSTRUCT]ONS *** 4 EXCITE, DELAY, AND MEASURE *** FUNCTION This instruction is used to apply an excitation voltage, delay a specified time, and then make a single-ended voltage measurement. A 1 before the excitation channel number (1X) causes the channelto be incremented with each repetition. PARAM. DATA NUMBER TYPE 01: 2 02: 2 03: 2 o4: 2 05: 4 06: 4 07: 4 08: FP 09: FP DESCRIPTION Bepetitions Range code (Table 9-l) Single-ended channel number for first measurement Excitation channel number Delay in hundredths of a second Excitation voltage (millivolts) Input location number for first measurement Multiplier Offset lnput locations altered: 1 per measurement **. 5 AC HALF BRIDGE *** FUNCTION This instruction is used to apply an excitation voltage to a half bridge (Figure 13.5-1), make a single-ended voltage measurement of the bridge output, reverse the excitation voltage, then repeat the measurement. The difference between the two measurements is used to calculate the resulting value which is the ratio of the measurement to the excitation voltage. A 1 before the excitation channel number (1X) causes the channelto be incremented with each repetition. The excitation "on time" for each polarity is exactly the same to insure that ionic sensors do not polarize with repetitive measurements. The range should be selected to be a fast measurement (range 11-15), limiting the excitation on time to less than 800 microseconds at each polarity" A slow integration time should not be used with ionic sensors because of polarization error. 9-3

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238

There
is
also an option to output the count as a
frequency
(i.e.,
counts/execution
interual
in
seconds
=
Hz) as well as discard
the
result from
an
excessive interual.
This allows
the
use of
a
conversion factor
that
is independent
of
the
execution
interval.
The
options of discarding counts
from
long
interuals, pulse input
type,
and using
a
16
bit
counter
are
selected by the code entered for
the
4th
parameter (Table 9-2).
NOTE: Allpulse
count
instructions must be
kept
in
the
same
table.
lf
the
Pulse Count
lnstruction
is
contained within a subroutine,
that
subroutine
must be called from
Table
2.
SECTION
9.
INPUT/OUTPUT
INSTRUCT]ONS
***
4
EXCITE,
DELAY, AND
MEASURE
***
FUNCTION
This
instruction is used to apply an excitation
voltage, delay a specified
time,
and
then
make
a single-ended
voltage measurement.
A
1
before
the
excitation
channel
number (1X)
causes the
channelto
be incremented with
each
repetition.
PARAM.
DATA
NUMBER
TYPE
DESCRIPTION
Bepetitions
Range
code
(Table
9-l)
Single-ended channel
number for
first
measurement
Excitation channel
number
Delay in hundredths
of
a second
Excitation voltage
(millivolts)
Input location number
for
first measurement
Multiplier
Offset
1
per
measurement
lnput
locations altered:
**.
5
AC HALF
BRIDGE
***
FUNCTION
This
instruction is used to apply an excitation
voltage
to a
half
bridge
(Figure 13.5-1), make
a
single-ended
voltage
measurement
of
the
bridge
output,
reverse the excitation voltage,
then
repeat
the measurement. The difference
between the
two
measurements is used
to
calculate
the
resulting value
which
is
the
ratio of
the
measurement to the excitation
voltage. A
1
before
the
excitation
channel
number (1X)
causes the
channelto
be incremented with
each
repetition.
The
excitation
"on
time" for
each
polarity
is
exactly the same
to
insure
that
ionic sensors do
not polarize
with
repetitive
measurements. The
range should be selected
to
be
a
fast
measurement
(range
11-15), limiting
the
excitation
on
time
to
less
than
800
microseconds at
each polarity"
A slow
integration
time
should not be used
with
ionic
sensors because of polarization error.
TABLE
9-2.
Gode
0
1
2
3
Pulse
Count Configuration
Codes
Confiouration
High frequency pulse
Low
levelAC
Switch closure
High
frequency
pulse, sixteen
bit
counter
Low
levelAC,
sixteen bit
counter
Long interval data discarded
Long interval data discarded,
frequency
(Hz) output
2
2
2
2
4
4
4
FP
FP
01:
02:
03:
o4:
05:
06:
07:
08:
09:
4
1X
2X
PARAM.
DATA
NUMBER
TYPE
DESCRIPTION
Repetitions
Pulse
channel
number
for
first measurement
Configuration code
(from above table)
Input location for
first
measurement
Multiplier
Otfset
1
per measurement
2
2
2
4
FP
FP
01:
02:
03:
o4;
05:
06:
Input locations altered:
Intermediate storage
locations
altered:
1
for
each
repetition
9-3