Campbell Scientific CR10 CR10 Measurement and Control - Page 175

Ro Cw, Model

Page 175 highlights

SECTION 13. CR1O MEASUREMENTS TABLE 13.3-5. Summary of Input Settling Data For Campbell Scientific Resistive Sensors Sensor Model # Belden Wire # Ro Cw a' (kohms) (ptdlft.) (us) Input Range(mV) Vr(mV) V"o(mV)** 107 207(RH) WVU-7 227 237 o24A 8641 8771 8723 8641 8641 8771 1 42 1 41 1 62 0.1-1 42 1 42 1-6 41 45 7.5 44 250 65 7.5 5-45 250 45 25 1-222 250 2000 1 500 2000 250 2500 500 50 85 0 0 65 0-90 Estimated time constants are for 1000 foot lead lengths and include 3.3nfd CR10 input capacitance. Measured peak transients for 1000 foot lead lengths at corresponding eXS{q!!q1.V* TABLE 13.3-6. Maximum Lead Length vs. Error for Campbell Scientific Resistive Sensors Sensor Model# Error Range Maximum V"(uv) Length(ft.) 107 2A7(RH) WVU-7 o24A 227 237 0.05'c 1o/"RH 0.05'c 3o 10 kohm OoC to 40"C 2oo/o to 9oo/o OoC to 40oC @ 360' 20k to 300k 5 250 5 2083 1000 10001 2oo03 8522 3802 2ooo3 20003 1 based on transient settling 2 based on signal rise time 3 limit of excitation drive The comparatively smalltransient yet large source resistance of the 024A sensor indicates that signal rise time may be the most important limitation. The analysis in Section 13.3.2 confirms this. The Model 227 Soil Moisture Block has a relatively short time constant and essentially no transient. Lead lengths in excess of 2000 feet produce less than a 0.1 bar (0-10 bar range) input settling error. With this sensor, the drive capability of the excitation channel limits the lead length. lf the capacitive load 0.1 pfd and the resistive load is negligible, V, will oscillate about its control point. lf the capacitive load is 0.1 or less, V, will settle to within 0.1% of its correct value 150 ps. A lead length of 2000 feet is permitted for the Model 227 betore approaching the drive limitation. Table 13.3-6 summarizes maximum lead lengths for corresponding error limits in six Campbell Scientific sensors. Since the first three sensors are nonlinear, the voltage error, V", is the most conservative value corresponding to the error over the range shown. MINIMIZING SETTLING ERRORS IN NON' CAMPBELL SCIENTIFIC SENSORS When long lead lengths are mandatory in sensors configured by the user, the following general practices can be used to minimize or measure settling errors: 1. When measurement speed is not a prime consideration, lnstruction 4, Excite, Delay, and Measure, can be used to insure ample settling time for half bridge, single-ended sensors. An additional low value bridge resistor can be added to decrease the source resistance, Ro. For example, assume a YSI nonlinear thermistor such as the model 44032 is used with a 30 kohm bridge resistor, R1. A typical configuration is shown in Figure 13.3-7A. The disadvantage with this configuration is the high source resistance shown in column 3 of Table 13.3-7. Adding another 1 K resistor, R1, as shown in Figure 13.3-TB,lowers the source resistance of the CR10 input. This offers no improvement over configuration A because Rt stillcombines with the lead capacitance to slow the signal response at point P" The source resistance at point P (column 5) is

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238

SECTION
13.
CR1O
MEASUREMENTS
TABLE 13.3-5. Summary of Input Settling
Data For
Campbell
Scientific
Resistive Sensors
Sensor
Model
#
107
207(RH)
WVU-7
227
237
o24A
Belden
Wire
#
V"o(mV)**
50
85
0
0
65
0-90
Ro Cw
a'
(kohms) (ptdlft.) (us)
Input
Range(mV)
Vr(mV)
8641
1
42
8771
1
41
8723
1
62
8641
0.1-1
42
8641
1
42
8771
1-6
41
45
7.5
44
250
65
7.5
5-45
250
45
25
1-222
250
2000
1
500
2000
250
2500
500
Estimated time constants are
for
1000
foot
lead lengths
and
include 3.3nfd
CR10
input capacitance.
Measured
peak
transients
for
1000
foot
lead lengths at corresponding
eXS{q!!q1.V*
TABLE 13.3-6. Maximum
Lead
Length vs. Error
for
Campbell
Scientific
Resistive Sensors
Maximum
V"(uv)
Length(ft.)
Sensor
Model#
Error
107
2A7(RH)
WVU-7
o24A
227
237
0.05'c
1o/"RH
0.05'c
3o
10 kohm
Range
OoC
to
40"C
2oo/o
to
9oo/o
OoC
to
40oC
@
360'
20k
to 300k
5
250
5
2083
1000
10001
2oo03
8522
3802
2ooo3
20003
1
2
3
based on transient settling
based on
signal
rise
time
limit of excitation drive
The
comparatively smalltransient yet
large
source
resistance of
the
024A
sensor
indicates
that
signal
rise
time
may be
the most
important
limitation. The
analysis in
Section
13.3.2
confirms this.
The
Model
227
Soil Moisture Block has
a
relatively short time constant and essentially
no
transient.
Lead lengths in excess of 2000
feet
produce less
than
a
0.1
bar (0-10
bar
range)
input settling
error.
With
this
sensor,
the
drive
capability of the excitation
channel
limits
the
lead
length.
lf
the
capacitive
load
0.1
pfd and
the
resistive load is negligible,
V,
will oscillate
about its
control
point.
lf the
capacitive
load
is
0.1
or
less,
V,
will settle to within 0.1% of
its
correct
value
150
ps.
A
lead length of 2000
feet
is permitted for
the
Model 227
betore
approaching
the drive
limitation.
Table
13.3-6
summarizes
maximum lead lengths
for
corresponding error
limits in six Campbell
Scientific
sensors.
Since the first
three
sensors
are
nonlinear, the
voltage
error,
V",
is
the
most
conservative value corresponding to
the error
over
the
range shown.
MINIMIZING
SETTLING ERRORS
IN
NON'
CAMPBELL
SCIENTIFIC SENSORS
When
long lead lengths
are
mandatory
in
sensors configured by
the
user, the following
general practices
can be
used
to
minimize or
measure settling errors:
When
measurement
speed
is not a prime
consideration,
lnstruction
4,
Excite, Delay,
and Measure,
can
be used
to
insure ample
settling time
for
half bridge, single-ended
sensors.
An
additional low value
bridge
resistor
can
be
added to decrease
the source
resistance,
Ro.
For example, assume a
YSI
nonlinear
thermistor
such as
the model
44032 is used
with a
30
kohm
bridge resistor,
R1. A typical
configuration
is
shown
in Figure
13.3-7A. The
disadvantage with this
configuration
is
the
high
source
resistance shown
in
column
3
of
Table
13.3-7.
Adding
another
1
K resistor,
R1,
as
shown
in Figure 13.3-TB,lowers
the source
resistance of
the
CR10
input.
This offers
no
improvement over configuration A
because Rt
stillcombines
with
the
lead capacitance
to
slow
the signal
response at
point
P"
The
source
resistance at
point
P (column
5)
is
1.