Campbell Scientific CR10 CR10 Measurement and Control - Page 148

pressure

Page 148 highlights

SECTION 10. PROCESSING INSTRUCTIONS Although the algorithm requires an air pressure entry, the daily fluctuations are small enough that for most applications a fixed entry of the standard pressure at the site elevation will suffice. lf a pressure sensor is employed, the current pressure can be used. PARAM. NUMBER TDAYTAPE 01: 4 DESCRIPTION Input location of atmospheric pressure in kilopascals IPRESSURE] O2; 4 Input location of dry- bulb temp. [DB TEMP.] 03: 4 Input location of wet- bulb temp. lwB TEMP.I 04:. 4 Destination input location for vapor pressure [VP or Z] Input locations altered: 1 *'* 58 LOW PASS FILTER *** FUNCTION Apply a numerical approximation to an analog resistor capacitor (RC) low pass (LP) filter using the following algorithm. F(Xi) = W*Xi+ F(Xi-1) . (1-W) Where X = input sample, W = usef entered weighting function (O< W

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238

SECTION
10.
PROCESSING INSTRUCTIONS
Although the
algorithm
requires an air pressure
entry, the daily fluctuations are small enough
that
for
most applications
a
fixed
entry
of
the
standard pressure
at
the site elevation will
suffice.
lf
a pressure sensor is employed,
the
current pressure
can
be used.
PARAM.
DATA
NUMBER
TYPE
DESCRIPTION
01:
4
Input location of
atmospheric
pressure
in kilopascals
IPRESSURE]
O2;
4
Input location of dry-
bulb
temp.
[DB
TEMP.]
03:
4
Input location
of
wet-
bulb temp.
lwB
TEMP.I
04:.
4
Destination input
location for
vapor
pressure
[VP
or
Z]
Input locations
altered:
1
*'*
58
LOW PASS
FILTER
***
FUNCTION
Apply
a
numerical approximation to an analog
resistor
capacitor
(RC) low pass (LP)
filter
using
the following algorithm.
F(Xi)
=
W*Xi+
F(Xi-1)
.
(1-W)
Where X
=
input sample, W
=
usef
entered
weighting
function
(O<
W
<1).
lf W=O,
F(X|)=X.,;
if
W=1,
F(X|)=X
and
F(Xi-1)
=
output
calculated
for
previous sample
The equivalent
RC
time constant
is
given by
TAA/,
where
T
is
the
sampling
time
in seconds.
For values
of
W
less than 0.25, the analogous
"cut off"
frequency
(the
frequency where
the
ratio of output
to
input
is
.707) is accurately
represented by
Wl(2nT).
For larger values
of
W,
this
"analog" estimate
of
the
cutotf frequency
becomes less representative.
On the
first
execution after
compiling,
F(X)
is
set
equalto
X.
PARAM.
DATA
NUMBER
TYPE
DESCRIPTION
2
Repetitions
First input location
for
input data
Dest. input location
for
first
filtered
resultlF(X)
or
Zl
Weighting
function,
W
twl
Input locations
altered:
1
for
each
repetition
***
59
BRIDGE
TRANSFORM
***
FUNCTION
This
instruction is used to
aid
in
the conversion
of
a
ratiometric Bridge measurement by
obtaining the value
for R,
which
is
equivalent to
Rr[)U(1-X)],
where X
is
the value derived by the
standard CR10 Bridge Measurement
Instructions (with appropriate multiplier and
otfset,
Section
13.5)
and
R1
represents
the
MULTIPLIER
value.
The
result
of
Instruction 59
is
stored
in
the same location that X was.
PARAM.
DATA
NUMBER
TYPE
DESCRIPTION
2
Repetitions
[REPS]
Starting input location
& result
destination
[X]
03:
FP
Multiplier
(Rf)
[MULT]
Input locations
altered:
1
for
each
repetition
***
61
INDIRECT INDEXED
MOVE
***
FUNCTION
Moves input data
from
location
X
to
location
Y,
where X and/or Y are indirectly addressed
(X
and Y are stored
in
the
locations specified by
Parameters
1
and
2).
lf
a
location parameter
is
specified
as
"indexed" (xxxx--), then the actual
input location referenced
is
calculated by adding
the current index counter to the value
in
the
specified input
location. When
used outside
a
loop,
the
addressing
is
simply indirect
because'
the
index counter is zero.
03:
04:
FP
10-6