Campbell Scientific CR10 CR10 Measurement and Control - Page 173

Shitld

Page 173 highlights

CR.1 O vx.\ HI OR tr\ V5 i\ I1., !-, - Cvv = SECTION 13. CRlO MEASUREMENTS SHITLD R5 .{' fn FTGURE 13.3-6. Resistive Half Bridge Connected to Single-Ended CR10 Input Ro, the source resistance, is not constant because Bp varies from 0 to 10 kohms over the 0 to 360 degree wind direction range. The source resistance is given by: Ro = Rc+(Ru(R.-R6+R)/(R"+R)) = R6+(Rp(20k-Rb)/20k) [13.3-12] Note that at 360 degrees, Ro is at a maximum of 6k (R6=10k) and at 0 degrees, Ro is 1k (Ru=O). lt follows that settling errors are less at lower direction values. The value of R6 for any direction D (degrees) is given by: R5(kohms) = (10kXDy360 [13.3-13] Equation 13.3-6 can be rewriften to yield the settling error of a rising signal directly in units of degrees. Error (degrees) = ps-U(Ro(Ct+CwL)) t13.3-141 Equation 13.3-12, -13 and -14 can be combined to estimate the error directly in degrees at various directions and lead lengths ffable 13.3- 3). Constants used in the calculations are given below: Ct = 3.3nfd Cw = 41 pfdlft., Belden #8771 wire t = 450ps TABLE 13.3-3. Settling Error, in Degrees, for 024A Wind Direction Sensor vs. Lead Length Wind Direction L=1000 ft. l-=500 ft. 360" 270 1 80' 900 66" 15" 45" 9o 21" 3o 4" 00 The values in Table 13.3-3 show that significant error occurs at large direction values for leads in excess of 500 feet. lnstruction 4, Excite, Delay, and Measure, should be used to eliminate errors in these types of situations. Using a 10 ms delay, settling errors are eliminated up to lengths that exceed the drive capability of the excitation channel (- 2000 ft.). 13.3.3 TRANSIENTS INDUCED BY SWITCHED EXCITATION Figure 13.3-6 shows a typical half bridge resistive sensor, such as Campbell Scientific's Model 107 Temperature Probe, connected to the CR10. The lead wire is a single-shielded pair, used for conducting the excitation (V*) and signal (Vr) voltages. When V* is switched on, a transient is capacitively induced in V., the signal voltage. lf the peak transient level, V*, is less than the true signal, V"o, the transient has no etfect on the measurement. lf V"o is greater than Vso, it must settle to the correct signal voltage to avoid errors. 13-7

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238

Ro,
the
source
resistance, is
not
constant
because
Bp
varies
from
0
to
10 kohms over
the
0
to 360 degree wind
direction
range.
The
source resistance is given
by:
Ro
=
Rc+(Ru(R.-R6+R)/(R"+R))
=
R6+(Rp(20k-Rb)/20k)
[13.3-12]
Note that at 360
degrees,
Ro
is at
a
maximum
of
6k
(R6=10k) and at 0
degrees,
Ro
is
1k
(Ru=O).
lt
follows
that
settling errors
are
less at
lower direction values.
The value
of
R6
for
any
direction D (degrees)
is
given
by:
R5(kohms)
=
(10kXDy360
[13.3-13]
Equation 13.3-6 can
be
rewriften to yield the
settling error of
a
rising signal
directly in
units of
degrees.
Error (degrees)
=
ps-U(Ro(Ct+CwL))
t13.3-141
Equation
13.3-12, -13 and -14
can
be combined
to estimate
the
error
directly
in
degrees at
various directions and lead lengths
ffable
13.3-
3).
Constants
used
in
the calculations are given
below:
Ct
=
3.3nfd
Cw
=
41
pfdlft.,
Belden #8771
wire
t
=
450ps
SECTION
13.
CRlO MEASUREMENTS
SHITLD
TABLE 13.3-3. Settling Error, in
Degrees,
for
024A
Wind Direction Sensor vs.
Lead
Length
Wind
Direction
L=1000
ft.
l-=500
ft.
The values
in
Table
13.3-3 show that significant
error occurs
at
large direction values
for
leads
in
excess of 500
feet.
lnstruction
4,
Excite,
Delay, and Measure, should
be
used
to
eliminate errors
in
these
types
of situations.
Using
a
10 ms delay, settling errors are
eliminated
up
to
lengths that exceed the drive
capability
of
the excitation
channel
(-
2000 ft.).
13.3.3
TRANSIENTS
INDUCED BY SWITCHED
EXCITATION
Figure 13.3-6 shows
a
typical
half bridge
resistive sensor,
such
as
Campbell
Scientific's
Model
107
Temperature
Probe, connected
to
the CR10.
The
lead
wire
is
a single-shielded
pair, used for conducting the
excitation
(V*) and
signal (Vr)
voltages.
When
V*
is
switched on,
a
transient
is
capacitively
induced
in
V.,
the signal
voltage.
lf
the
peak
transient
level,
V*,
is less
than the true signal, V"o, the
transient
has
no
etfect
on the measurement.
lf V"o is greater
than
Vso,
it must settle to
the correct
signal
voltage to avoid errors.
CR.1
O
FTGURE
13.3-6. Resistive
Half
Bridge Connected
to
Single-Ended
CR10
Input
R5
360"
270
1
80'
900
66"
45"
21"
4"
15"
9o
3o
00
OR
1.,
I
tr\
HI
vx.\
V5
!-,
=
i\
-
Cvv
.{'
fn
13-7