Campbell Scientific CR10 CR10 Measurement and Control - Page 147

coefficient, coetficient

Page 147 highlights

PARAM. NUMBER TDAYTAPE DESCRIPTION 01: 4 Number of values to move 02: 4 1st source location 03: 2 Step of source 04; 4 1st destination location 05: 2 Step of destination Intermediate storage: 0 *** 55 sTH ORDER POLYNOMIAL *** FUNCTION Evaluate a Sth order polynomialof the form F(X)=Qga g 1 X+C2X2+C3X3*O4X4..O5X5 where C0 through C5 are the coefficients for the argument X raised to the zero through fifth power, respectively. The magnitude of the user entered coetficient is limited to a range of t.00001 to t99999. Polynomials with coefficients outside this range can be modified by pre-scaling the X value by an appropriate factor to place the coefficients within the entry range. Pre-scaling can also be used to modily coefficients which are very close to 0 to increase the number of significant digits. PARAM. NUMBER TDAYTAPE 01: 2 02: 4 03: 4 04: FP 05: FP 06: FP 07: FP 08: FP 09: FP DESCRIPTION Repetitions IREPSI X Starting inPut location for txl Dest. input location for F(X) [F(X) or Z] C0 coefficient [C0] Cl coefficient ICll C2 coefficient l0zl C3 coefficient tOal C4 coetficient tC4) C5 coetficient [C5] Input locations altered: 1* Reps SECTION 10. PROCESSING INSTRUCTIONS *** 56 SATURATION VAPOR PRESSURE *** FUNCTION Calculate saturation vapor pressure (over water SVPW) in kilopascals from the air temperature ('C) and place it in an input location. The algorithm for obtaining SVPW from air temperature ('C) is taken from: Lowe, Paul R.: 1977, " An approximating polynomial for computation of saturation vapor presst)re," J. Appl. Meteor, 16, 100-103. Saturation vapor pressure over ice (SVPI) in kilopascals for a OoC to -50'C range can be obtained using Instruction 55 and the relationship SVPI = -.00486 + .85471 X + .2441 X2 where X is the SVPW derived by Instruction 56. This relationship was derived by Campbell Scientific from the equations for the SVPW and the SVPI given in Lowe's paper. PARAM. NUMBER TDAYTAPE 01: 4 DESCRIPTION Input location of air temperature oC rrEMP.l o2: 4 Destination input location for saturated vapor pressure IVP or Zl Input locations altered: 1 *** 57 VAPOR PRESSURE FROM *** WET./DRY.BU LB TEMPERATURES FUNCTION Calculate vapor pressure in kilopascals from wet and dry-bulb temperatures in "C. This atgorithm type is used by the NationalWeather Service: VP = VPW - A(1 + B.TWXTA - TW) P VP = ambient vapor pressure in kilopascals VPW = saturation vapor pressure at the wetbulb temperature in kilopascals TW = wet-bulb temperature, "C TA = ambient air temperature, "C P = air pressure in kilopascals A = 0.000660 B = 0.00115 10-5

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238

PARAM.
DATA
NUMBER
TYPE
DESCRIPTION
01:
4
Number of values
to
move
02:
4
1st
source
location
03:
2
Step of source
04;
4
1st
destination location
05:
2
Step of destination
Intermediate
storage:
0
***
55
sTH ORDER
POLYNOMIAL
***
FUNCTION
Evaluate a
Sth
order
polynomialof
the form
F(X)=Qga
g
1
X+C2X2+C3X3*O4X4..O5X5
where C0
through
C5 are the coefficients for
the
argument
X
raised to
the
zero
through
fifth
power,
respectively. The
magnitude
of
the
user
entered
coetficient
is limited
to a
range of
t.00001 to
t99999.
Polynomials with
coefficients outside
this
range
can be
modified
by pre-scaling the
X
value
by an appropriate
factor
to
place the coefficients within
the
entry
range.
Pre-scaling can also
be
used
to modily
coefficients which are very close
to
0
to
increase
the
number of significant digits.
PARAM.
DATA
NUMBER
TYPE
DESCRIPTION
01:
2
Repetitions
IREPSI
02:
4
Starting
inPut
location
for
X
txl
03:
4
Dest. input location
for
F(X)
[F(X)
or Z]
04:
FP
C0
coefficient
[C0]
05:
FP
Cl
coefficient
ICll
06:
FP
C2
coefficient
l0zl
07:
FP
C3
coefficient
tOal
08:
FP
C4
coetficient
tC4)
09:
FP
C5
coetficient
[C5]
Input locations
altered:
1* Reps
SECTION
10.
PROCESSING INSTRUCTIONS
***
56
SATURATION VAPOR PRESSURE
***
FUNCTION
Calculate saturation
vapor pressure
(over
water
SVPW) in kilopascals from
the
air
temperature
('C)
and place it in an
input location. The
algorithm for
obtaining
SVPW
from air
temperature
('C)
is
taken
from:
Lowe, Paul
R.:
1977,
"
An approximating polynomial
for
computation of saturation
vapor
presst)re,"
J.
Appl.
Meteor,
16,
100-103.
Saturation
vapor
pressure
over
ice (SVPI)
in
kilopascals for a
OoC
to
-50'C
range
can
be
obtained using Instruction 55 and
the
relationship
SVPI
=
-.00486
+
.85471 X
+
.2441
X2
where X
is
the SVPW derived
by
Instruction
56.
This
relationship was derived by Campbell
Scientific from
the
equations for
the
SVPW and
the
SVPI given
in
Lowe's paper.
PARAM.
DATA
NUMBER
TYPE
DESCRIPTION
4
Input location of air
temperature
oC
rrEMP.l
4
Destination input
location for saturated
vapor
pressure
IVP
or
Zl
Input locations
altered:
1
***
57
VAPOR
PRESSURE
FROM
***
WET./DRY.BU
LB TEMPERATURES
FUNCTION
Calculate
vapor pressure
in kilopascals from
wet and dry-bulb
temperatures
in
"C.
This
atgorithm
type
is used
by
the NationalWeather
Service:
VP
=
VPW
-
A(1 + B.TWXTA
-
TW)
P
VP
=
ambient
vapor pressure
in kilopascals
VPW
=
saturation
vapor
pressure
at
the wet-
bulb
temperature
in kilopascals
TW
=
wet-bulb
temperature, "C
TA
=
ambient air
temperature, "C
P
=
air
pressure in kilopascals
A
=
0.000660
B
=
0.00115
01:
o2:
10-5