Intel E2160 Design Guide - Page 30

On-Demand Mode, 4.2.6 System Considerations, Intel, Duo E6400, E4300, and Intel, Pentium - drivers

Page 30 highlights

Intel® CoreTM 2 Duo E6400, E4300, and Intel® Pentium® Dual-Core E2160 Processor-Thermal Management Logic and Thermal Monitor Feature 4.2.5 Note: 4.2.6 internal interrupt which would initiate an OEM supplied interrupt service routine. Regardless of the configuration selected, PROCHOT# will always indicate the thermal status of the processor. The power reduction mechanism of thermal monitor can also be activated manually using an "on-demand" mode. Refer to Section 4.2.5 for details on this feature. On-Demand Mode For testing purposes, the thermal control circuit may also be activated by setting bits in the ACPI MSRs. The MSRs may be set based on a particular system event (e.g., an interrupt generated after a system event), or may be set at any time through the operating system or custom driver control thus forcing the thermal control circuit on. This is referred to as "on-demand" mode. Activating the thermal control circuit may be useful for thermal solution investigations or for performance implication studies. When using the MSRs to activate the on-demand clock modulation feature, the duty cycle is configurable in steps of 12.5%, from 12.5% to 87.5%. For any duty cycle, the maximum time period the clocks are disabled is ~3 μs. This time period is frequency dependent, and decreases as frequency increases. To achieve different duty cycles, the length of time that the clocks are disabled remains constant, and the time period that the clocks are enabled is adjusted to achieve the desired ratio. For example, if the clock disable period is 3 µs, and a duty cycle of ¼ (25%) is selected, the clock on time would be reduced to approximately 1 s [on time (1 μs) ÷ total cycle time (3 + 1) μs = ¼ duty cycle]. Similarly, for a duty cycle of 7/8 (87.5%), the clock on time would be extended to 21 μs [21 ÷ (21 + 3) = 7/8 duty cycle]. In a high temperature situation, if the thermal control circuit and ACPI MSRs (automatic and on-demand modes) are used simultaneously, the fixed duty cycle determined by automatic mode would take precedence. On-demand mode can not activate the power reduction mechanism of Thermal Monitor 2. System Considerations Intel requires the Thermal Monitor and Thermal Control Circuit to be enabled for all processors. The thermal control circuit is intended to protect against short term thermal excursions that exceed the capability of a well designed processor thermal solution. Thermal Monitor should not be relied upon to compensate for a thermal solution that does not meet the thermal profile up to the thermal design power (TDP). Each application program has its own unique power profile, although the profile has some variability due to loop decisions, I/O activity and interrupts. In general, compute intensive applications with a high cache hit rate dissipate more processor power than applications that are I/O intensive or have low cache hit rates. The processor TDP is based on measurements of processor power consumption while running various high power applications. This data is used to determine those applications that are interesting from a power perspective. These applications are then evaluated in a controlled thermal environment to determine their sensitivity to activation of the thermal control circuit. This data is used to derive the TDP targets published in the processor datasheet. A system designed to meet the thermal profile at TDP and TC-MAX values published in the processor datasheet greatly reduces the probability of real applications causing the thermal control circuit to activate under normal operating conditions. Systems that do not meet these specifications could be subject to more frequent activation of the thermal control circuit depending upon the ambient air temperature and the application Intel® CoreTM 2 Duo E6400, E4300, and Intel® Pentium® Dual-Core E2160 Processor TDG 30 October 2007 Order Number: 315279 - 003US

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55

Intel
®
Core
TM
2 Duo E6400, E4300, and Intel
®
Pentium
®
Dual-Core E2160 Processor—Thermal
Management Logic and Thermal Monitor Feature
Intel
®
Core
TM
2 Duo E6400, E4300, and Intel
®
Pentium
®
Dual-Core E2160 Processor
TDG
October 2007
30
Order Number: 315279 - 003US
internal interrupt which would initiate an OEM supplied interrupt service routine.
Regardless of the configuration selected, PROCHOT# will always indicate the thermal
status of the processor.
The power reduction mechanism of thermal monitor can also be activated manually
using an "on-demand" mode. Refer to
Section 4.2.5
for details on this feature.
4.2.5
On-Demand Mode
For testing purposes, the thermal control circuit may also be activated by setting bits in
the ACPI MSRs. The MSRs may be set based on a particular system event (e.g., an
interrupt generated after a system event), or may be set at any time through the
operating system or custom driver control thus forcing the thermal control circuit on.
This is referred to as "on-demand" mode. Activating the thermal control circuit may be
useful for thermal solution investigations or for performance implication studies. When
using the MSRs to activate the on-demand clock modulation feature, the duty cycle is
configurable in steps of 12.5%, from 12.5% to 87.5%.
For any duty cycle, the maximum time period the clocks are disabled is ~3
μ
s. This
time period is frequency dependent, and decreases as frequency increases. To achieve
different duty cycles, the length of time that the clocks are disabled remains constant,
and the time period that the clocks are enabled is adjusted to achieve the desired ratio.
For example, if the clock disable period is 3 μs, and a duty cycle of ¼ (25%) is
selected, the clock on time would be reduced to approximately 1 s [on time (1
μ
s)
÷
total cycle time (3 + 1)
μ
s = ¼ duty cycle]. Similarly, for a duty cycle of 7/8 (87.5%),
the clock on time would be extended to 21
μ
s [21
÷
(21 + 3) = 7/8 duty cycle].
In a high temperature situation, if the thermal control circuit and ACPI MSRs
(automatic and on-demand modes) are used simultaneously, the fixed duty cycle
determined by automatic mode would take precedence.
Note:
On-demand mode can not activate the power reduction mechanism of Thermal
Monitor 2.
4.2.6
System Considerations
Intel requires the Thermal Monitor and Thermal Control Circuit to be enabled for all
processors. The thermal control circuit is intended to protect against short term
thermal excursions that exceed the capability of a well designed processor thermal
solution. Thermal Monitor should not be relied upon to compensate for a thermal
solution that does not meet the thermal profile up to the thermal design power (TDP).
Each application program has its own unique power profile, although the profile has
some variability due to loop decisions, I/O activity and interrupts. In general, compute
intensive applications with a high cache hit rate dissipate more processor power than
applications that are I/O intensive or have low cache hit rates.
The processor TDP is based on measurements of processor power consumption while
running various high power applications. This data is used to determine those
applications that are interesting from a power perspective. These applications are then
evaluated in a controlled thermal environment to determine their sensitivity to
activation of the thermal control circuit. This data is used to derive the TDP targets
published in the processor datasheet.
A system designed to meet the thermal profile at TDP and T
C-MAX
values published in
the processor datasheet greatly reduces the probability of real applications causing the
thermal control circuit to activate under normal operating conditions. Systems that do
not meet these specifications could be subject to more frequent activation of the
thermal control circuit depending upon the ambient air temperature and the application