HP 50g HP 50g_user's manual_English_HDPSG49AEM8.pdf - Page 83

The SIMP2 function, The PROPFRAC function, X^4+11*X^3-7*X^2+10*X

Page 83 highlights

FACTOR('(X^3-9*X)/(X^2-5*X+6)' )='X*(X+3)/(X-2)' The SIMP2 function Function SIMP2, in the ARITHMETIC menu, takes as arguments two numbers or polynomials, representing the numerator and denominator of a rational fraction, and returns the simplified numerator and denominator. For example: SIMP2('X^3-1','X^2-4*X+3') = {'X^2+X+1','X-3'} The PROPFRAC function The function PROPFRAC converts a rational fraction into a "proper" fraction, i.e., an integer part added to a fractional part, if such decomposition is possible. For example: PROPFRAC('5/4') = '1+1/4' PROPFRAC('(x^2+1)/x^2') = '1+1/x^2' The PARTFRAC function The function PARTFRAC decomposes a rational fraction into the partial fractions that produce the original fraction. For example: PARTFRAC('(2*X^6-14*X^5+29*X^4-37*X^3+41*X^2-16*X+5)/(X^57*X^4+11*X^3-7*X^2+10*X)') = '2*X+(1/2/(X-2)+5/(X-5)+1/2/X+X/(X^2+1))' The FCOEF function The function FCOEF, available through the ARITHMETIC/POLYNOMIAL menu, is used to obtain a rational fraction, given the roots and poles of the fraction. NOTE: If a rational fraction is given as F(X) = N(X)/D(X), the roots of the fraction result from solving the equation N(X) = 0, while the poles result from solving the equation D(X) = 0. The input for the function is a vector listing the roots followed by their multiplicity (i.e., how many times a given root is repeated), and the poles followed by their multiplicity represented as a negative number. For example, if we want to create a fraction having roots 2 with multiplicity 1, 0 with multiplicity 3, and -5 with multiplicity 2, and poles 1 with multiplicity 2 and -3 with multiplicity 5, use: Page 5-10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184

Page 5-10
FACTOR(‘(X^3-9*X)/(X^2-5*X+6)’ )=‘X*(X+3)/(X-2)’
The SIMP2 function
Function SIMP2, in the ARITHMETIC menu, takes as arguments two
numbers or polynomials, representing the numerator and denominator of a
rational fraction, and returns the simplified numerator and denominator.
For example:
SIMP2(‘X^3-1’,’X^2-4*X+3’) = {‘X^2+X+1’,‘X-3’}
The PROPFRAC function
The function PROPFRAC converts a rational fraction into a “proper”
fraction, i.e., an integer part added to a fractional part, if such
decomposition is possible.
For example:
PROPFRAC(‘5/4’) = ‘1+1/4’
PROPFRAC(‘(x^2+1)/x^2’) = ‘1+1/x^2’
The PARTFRAC function
The function PARTFRAC decomposes a rational fraction into the partial
fractions that produce the original fraction.
For example:
PARTFRAC(‘(2*X^6-14*X^5+29*X^4-37*X^3+41*X^2-16*X+5)/(X^5-
7*X^4+11*X^3-7*X^2+10*X)’) =
‘2*X+(1/2/(X-2)+5/(X-5)+1/2/X+X/(X^2+1))’
The FCOEF function
The function FCOEF, available through the ARITHMETIC/POLYNOMIAL
menu, is used to obtain a rational fraction, given the roots and poles of the
fraction.
The input for the function is a vector listing the roots followed by their
multiplicity (i.e., how many times a given root is repeated), and the poles
followed by their multiplicity represented as a negative number.
For
example, if we want to create a fraction having roots 2 with multiplicity 1,
0 with multiplicity 3, and -5 with multiplicity 2, and poles 1 with multiplicity
2 and –3 with multiplicity 5, use:
NOTE
: If a rational fraction is given as F(X) = N(X)/D(X), the roots of
the fraction result from solving the equation N(X) = 0, while the poles
result from solving the equation D(X) = 0.