Intel E5310 Data Sheet - Page 22

Front Side Bus Signal Groups, Table 2-6., FSB Signal Groups Sheet 1 of 2

Page 22 highlights

Electrical Specifications The TESTHI signals may use individual pull-up resistors or be grouped together as detailed below. A matched resistor must be used for each group: • TESTHI[1:0] - can be grouped together with a single pull-up to VTT • TESTHI[7:2] - can be grouped together with a single pull-up to VTT • TESTHI10 - cannot be grouped with other TESTHI signals • TESTHI11 - cannot be grouped with other TESTHI signals 2.7 Front Side Bus Signal Groups The FSB signals have been combined into groups by buffer type. AGTL+ input signals have differential input buffers, which use GTLREF_DATA_MID, GTLREF_DATA_END, GTLREF_ADD_MID, and GTLREF_ADD_END as reference levels. In this document, the term "AGTL+ Input" refers to the AGTL+ input group as well as the AGTL+ I/O group when receiving. Similarly, "AGTL+ Output" refers to the AGTL+ output group as well as the AGTL+ I/O group when driving. AGTL+ asynchronous outputs can become active anytime and include an active PMOS pull-up transistor to assist during the first clock of a low-to-high voltage transition. With the implementation of a source synchronous data bus comes the need to specify two sets of timing parameters. One set is for common clock signals whose timings are specified with respect to rising edge of BCLK0 (ADS#, HIT#, HITM#, etc.) and the second set is for the source synchronous signals which are relative to their respective strobe lines (data and address) as well as rising edge of BCLK0. Asynchronous signals are still present (A20M#, IGNNE#, etc.) and can become active at any time during the clock cycle. Table 2-6 identifies which signals are common clock, source synchronous and asynchronous. Table 2-6. FSB Signal Groups (Sheet 1 of 2) Signal Group AGTL+ Common Clock Input AGTL+ Common Clock Output AGTL+ Common Clock I/O Type Synchronous to BCLK[1:0] Synchronous to BCLK[1:0] Synchronous to BCLK[1:0] AGTL+ Source Synchronous I/O Synchronous to assoc. strobe Signals1 BPRI#, DEFER#, RESET#, RS[2:0]#, RSP#, TRDY#; BPM4#, BPM[2:1]#, BPMb[2:1]# ADS#, AP[1:0]#, BINIT#2, BNR#2, BPM5#, BPM3#, BPM0#, BPMb3#, BPMb0#, BR[1:0]#, DBSY#, DP[3:0]#, DRDY#, HIT#2, HITM#2, LOCK#, MCERR#2 Signals Associated Strobe REQ[4:0]#,A[16:3]#, ADSTB0# A[37:36]#3 A[35:17]# ADSTB1# D[15:0]#, DBI0# DSTBP0#, DSTBN0# D[31:16]#, DBI1# DSTBP1#, DSTBN1# D[47:32]#, DBI2# DSTBP2#, DSTBN2# D[63:48]#, DBI3# DSTBP3#, DSTBN3# AGTL+ Strobes I/O Open Drain Output Synchronous to BCLK[1:0] Asynchronous ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]# FERR#/PBE#, IERR#, PROCHOT#, THERMTRIP# 22 Quad-Core Intel® Xeon® Processor 5300 Series Datasheet

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112

Electrical Specifications
22
Quad-Core Intel® Xeon® Processor 5300 Series Datasheet
The TESTHI signals may use individual pull-up resistors or be grouped together as
detailed below. A matched resistor must be used for each group:
TESTHI[1:0] - can be grouped together with a single pull-up to V
TT
TESTHI[7:2] - can be grouped together with a single pull-up to V
TT
TESTHI10 – cannot be grouped with other TESTHI signals
TESTHI11 – cannot be grouped with other TESTHI signals
2.7
Front Side Bus Signal Groups
The FSB signals have been combined into groups by buffer type. AGTL+ input signals
have differential input buffers, which use GTLREF_DATA_MID, GTLREF_DATA_END,
GTLREF_ADD_MID, and GTLREF_ADD_END as reference levels. In this document, the
term “AGTL+ Input” refers to the AGTL+ input group as well as the AGTL+ I/O group
when receiving. Similarly, “AGTL+ Output” refers to the AGTL+ output group as well as
the AGTL+ I/O group when driving. AGTL+ asynchronous outputs can become active
anytime and include an active PMOS pull-up transistor to assist during the first clock of
a low-to-high voltage transition.
With the implementation of a source synchronous data bus comes the need to specify
two sets of timing parameters. One set is for common clock signals whose timings are
specified with respect to rising edge of BCLK0 (ADS#, HIT#, HITM#, etc.) and the
second set is for the source synchronous signals which are relative to their respective
strobe lines (data and address) as well as rising edge of BCLK0. Asynchronous signals
are still present (A20M#, IGNNE#, etc.) and can become active at any time during the
clock cycle.
Table 2-6
identifies which signals are common clock, source synchronous
and asynchronous.
Table 2-6.
FSB Signal Groups (Sheet 1 of 2)
Signal Group
Type
Signals
1
AGTL+ Common Clock Input
Synchronous to
BCLK[1:0]
BPRI#, DEFER#, RESET#, RS[2:0]#, RSP#,
TRDY#;
AGTL+ Common Clock Output
Synchronous to
BCLK[1:0]
BPM4#, BPM[2:1]#, BPMb[2:1]#
AGTL+ Common Clock I/O
Synchronous to
BCLK[1:0]
ADS#, AP[1:0]#, BINIT#
2
, BNR#
2
, BPM5#,
BPM3#, BPM0#, BPMb3#, BPMb0#, BR[1:0]#,
DBSY#, DP[3:0]#, DRDY#, HIT#
2
, HITM#
2
,
LOCK#, MCERR#
2
AGTL+ Source Synchronous I/O
Synchronous to assoc.
strobe
AGTL+ Strobes I/O
Synchronous to
BCLK[1:0]
ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#
Open Drain Output
Asynchronous
FERR#/PBE#, IERR#, PROCHOT#, THERMTRIP#
Signals
Associated Strobe
REQ[4:0]#,A[16:3]#,
A[37:36]#
3
ADSTB0#
A[35:17]#
ADSTB1#
D[15:0]#, DBI0#
DSTBP0#, DSTBN0#
D[31:16]#, DBI1#
DSTBP1#, DSTBN1#
D[47:32]#, DBI2#
DSTBP2#, DSTBN2#
D[63:48]#, DBI3#
DSTBP3#, DSTBN3#