Intel E6700 Mechanical Design Guidelines - Page 55

Heatsink Thermal Validation, Structural Reliability Testing

Page 55 highlights

ATX Thermal/Mechanical Design Information 6.2.4 Heatsink Thermal Validation Intel recommends evaluation of the heatsink within the specific boundary conditions based on the methodology described Section 6.3 , and using a thermal test vehicle. Testing is done on bench top test boards at ambient lab temperature. In particular, for the reference heatsink, the Plexiglas* barrier is installed 81.28 mm [3.2 in] above the motherboard (refer to Sections 3.3 and 6.6). The test results, for a number of samples, are reported in terms of a worst-case mean + 3σ value for thermal characterization parameter using real processors (based on the thermal test vehicle correction factors). Note: The above 81.28 mm obstruction height that is used for testing complies with the recommended obstruction height of 88.9 mm for the ATX form factor. However, it would conflict with systems in strict compliance with the ATX specification which allows an obstruction as low as 76.2 mm above the motherboard surface in Area A. 6.3 Environmental Reliability Testing 6.3.1 6.3.1.1 Structural Reliability Testing Structural reliability tests consist of unpackaged, board-level vibration and shock tests of a given thermal solution in the assembled state. The thermal solution should meet the specified thermal performance targets after these tests are conducted; however, the test conditions outlined here may differ from your own system requirements. Random Vibration Test Procedure Duration: 10 min/axis, 3 axes Frequency Range: 5 Hz to 500 Hz Power Spectral Density (PSD) Profile: 3.13 G RMS Thermal and Mechanical Design Guidelines 55

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126

ATX Thermal/Mechanical Design Information
Thermal and Mechanical Design Guidelines
55
6.2.4
Heatsink Thermal Validation
Intel recommends evaluation of the heatsink within the specific boundary conditions
based on the methodology described Section 6.3 , and using a thermal test vehicle.
Testing is done on bench top test boards at ambient lab temperature. In particular, for
the reference heatsink, the Plexiglas* barrier is installed 81.28 mm [3.2 in] above the
motherboard (refer to Sections 3.3 and 6.6).
The test results, for a number of samples, are reported in terms of a worst-case mean
+ 3
σ
value for thermal characterization parameter using real processors (based on the
thermal test vehicle correction factors).
Note:
The above 81.28 mm obstruction height that is used for testing complies with the
recommended obstruction height of 88.9 mm for the ATX form factor. However, it
would conflict with systems in strict compliance with the ATX specification which
allows an obstruction as low as 76.2 mm above the motherboard surface in Area A.
6.3
Environmental Reliability Testing
6.3.1
Structural Reliability Testing
Structural reliability tests consist of unpackaged, board-level vibration and shock tests
of a given thermal solution in the assembled state. The thermal solution should meet
the specified thermal performance targets after these tests are conducted; however,
the test conditions outlined here may differ from your own system requirements.
6.3.1.1
Random Vibration Test Procedure
Duration: 10 min/axis, 3 axes
Frequency Range: 5 Hz to 500 Hz
Power Spectral Density (PSD) Profile: 3.13 G RMS