Dell PowerEdge XL 5133-4 MXL 10/40GbE Switch IO Module FTOS Command Reference - Page 74

How Priority-Based Flow Control is Implemented, FTOS does not support MACsec Bypass Capability MBC.

Page 74 highlights

www.dell.com | support.dell.com How Priority-Based Flow Control is Implemented Priority-based flow control provides a flow control mechanism based on the 802.1p priorities in converged Ethernet traffic received on an interface and is enabled by default. As an enhancement to the existing Ethernet pause mechanism, PFC stops traffic transmission for specified priorities (CoS values) without impacting other priority classes. Different traffic types are assigned to different priority classes. When traffic congestion occurs, PFC sends a pause frame to a peer device with the CoS priority values of the traffic that needs to be stopped. DCBX provides the link-level exchange of PFC parameters between peer devices. PFC creates zero-loss links for SAN traffic that requires no-drop service, while at the same time retaining packet-drop congestion management for LAN traffic. PFC is implemented on an Aggregator as follows: • If DCB is enabled, as soon as a DCB policy with PFC is applied on an interface, DCBX starts exchanging information with PFC-enabled peers. The IEEE802.1Qbb, CEE and CIN versions of PFC TLV are supported. DCBX also validates PFC configurations received in TLVs from peer devices. • To achieve complete lossless handling of traffic, enable PFC operation is enabled on ingress port traffic and enabled on all DCB egress port traffic. • All 802.1p priorities are enabled for PFC. Queues to which PFC priority traffic is mapped are lossless by default. Traffic may be interrupted due to an interface flap (going down and coming up). • For PFC to be applied on an Aggregator port, the auto-configured priority traffic must be supported by a PFC peer (as detected by DCBX). • A DCB input policy for PFC applied to an interface may become invalid if dot1p-queue mapping is reconfigured (refer to Create Input Policy Maps). This situation occurs when the new dot1p-queue assignment exceeds the maximum number (2) of lossless queues supported globally on the switch. In this case, all PFC configurations received from PFC-enabled peers are removed and re-synchronized with the peer devices. • FTOS does not support MACsec Bypass Capability (MBC). 60 | Data Center Bridging (DCB)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290

60
|
Data Center Bridging (DCB)
www.dell.com | support.dell.com
How Priority-Based Flow Control is Implemented
Priority-based flow control provides a flow control mechanism based on the 802.1p priorities in converged
Ethernet traffic received on an interface and is enabled by default. As an enhancement to the existing
Ethernet pause mechanism, PFC stops traffic transmission for specified priorities (CoS values) without
impacting other priority classes. Different traffic types are assigned to different priority classes.
When traffic congestion occurs, PFC sends a pause frame to a peer device with the CoS priority values of
the traffic that needs to be stopped. DCBX provides the link-level exchange of PFC parameters between
peer devices. PFC creates zero-loss links for SAN traffic that requires no-drop service, while at the same
time retaining packet-drop congestion management for LAN traffic.
PFC is implemented on an Aggregator as follows:
If DCB is enabled, as soon as a DCB policy with PFC is applied on an interface, DCBX starts
exchanging information with PFC-enabled peers. The IEEE802.1Qbb, CEE and CIN versions of PFC
TLV are supported. DCBX also validates PFC configurations received in TLVs from peer devices.
To achieve complete lossless handling of traffic, enable PFC operation
is enabled on ingress port
traffic and
e
nabled on all DCB egress port traffic.
All 802.1p priorities are enabled for PFC. Queues to which PFC priority traffic is mapped are lossless
by default. Traffic may be interrupted due to an interface flap (going down and coming up).
For PFC to be applied on an Aggregator port, the auto-configured priority traffic must be supported by
a PFC peer (as detected by DCBX).
A DCB input policy for PFC applied to an interface may become invalid if dot1p-queue mapping is
reconfigured (refer to Create Input Policy Maps). This situation occurs when the new dot1p-queue
assignment exceeds the maximum number (2) of lossless queues supported globally on the switch. In
this case, all PFC configurations received from PFC-enabled peers are removed and re-synchronized
with the peer devices.
FTOS does not support MACsec Bypass Capability (MBC).