Intel S1200BTL Product Specification - Page 54

Intel, Intelligent Power Node Manager - fan speeds

Page 54 highlights

Platform Management Intel®Server Board S1200BT TPS sensors on the installed memory DIMMs. The Integrated Memory Controller (IMC) dynamically changes throttling levels to cap throttling based on memory and system thermal conditions as determined by the system and DIMM power and thermal parameters. Support for CLTT on mixed-mode DIMM populations (i.e. some installed DIMMs have valid temp sensors and some do not) is not supported. The Integrated BMC fan speed control functionality is related to the memory throttling mechanism used. The following terminology is used for the various memory throttling options:  Static Open Loop Thermal Throttling (Static-OLTT): OLTT control registers are configured by BIOS MRC remain fixed after post. The system does not change any of the throttling control registers in the embedded memory controller during runtime.  Static Closed Loop Thermal Throttling (Static-CLTT): CLTT control registers are configured by BIOS MRC during POST. The memory throttling is run as a closed-loop system with the DIMM temperature sensors as the control input. Otherwise, the system does not change any of the throttling control registers in the embedded memory controller during runtime. 4.3.2 Fan Speed Control BIOS and BMC software work cooperatively to implement system thermal management support. During normal system operation, the BMC will retrieve information from the BIOS and monitor several platform thermal sensors to determine the required fan speeds. In order to provide the proper fan speed control for a given system configuration, the BMC must have the appropriate platform data programmed. Platform configuration data is programmed using the FRUSDR utility during the system integration process and by System BIOS during run time. 4.3.2.1 System Configuration Using the FRUSDR Utility The Field Replaceable Unit and Sensor Data Record Update Utility (FRUSDR utility) is a program used to write platform-specific configuration data to NVRAM on the server board. It allows the user to select which supported chassis (Intel® or Non-Intel) and platform chassis configuration is used. Based on the input provided, the FRUSDR writes sensor data specific to the configuration to NVRAM for the BMC controller to read each time the system is powered on. 4.4 Intel® Intelligent Power Node Manager 4.4.1 Overview Power management deals with requirements to manage processor power consumption and manage power at the platform level to meet critical business needs. Node Manager (NM) is a platform resident technology that enforces power capping and thermal-triggered power capping policies for the platform. These policies are applied by exploiting subsystem knobs (such as processor P and T states) that can be used to control power consumption. NM enables data center power management by exposing an external interface to management software through which platform policies can be specified. It also implements specific data center power management usage models such as power limiting, and thermal monitoring. 42 Revision 1.0 Intel order number G13326-003

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153

Platform Management
Intel®
Server Board S1200BT TPS
Revision 1.0
Intel order number G13326-003
42
sensors on the installed memory DIMMs.
The Integrated Memory Controller (IMC) dynamically
changes throttling levels to cap throttling based on memory and system thermal conditions as
determined by the system and DIMM power and thermal parameters.
Support for CLTT on
mixed-mode DIMM populations (i.e. some installed DIMMs have valid temp sensors and some
do not) is not supported.
The Integrated BMC fan speed control functionality is related to the
memory throttling mechanism used.
The following terminology is used for the various memory throttling options:
Static Open Loop Thermal Throttling (Static-OLTT):
OLTT control registers are
configured by BIOS MRC remain fixed after post. The system does not change any of
the throttling control registers in the embedded memory controller during runtime.
Static Closed Loop Thermal Throttling (Static-CLTT):
CLTT control registers are
configured by BIOS MRC during POST. The memory throttling is run as a closed-loop
system with the DIMM temperature sensors as the control input. Otherwise, the system
does not change any of the throttling control registers in the embedded memory
controller during runtime.
4.3.2
Fan Speed Control
BIOS and BMC software work cooper
atively to implement system thermal management
support. During normal system operation, the BMC will retrieve information from the BIOS and
monitor several platform thermal sensors to determine the required fan speeds.
In order to provide the proper fan speed control for a given system configuration, the BMC must
have the appropriate platform data programmed. Platform configuration data is programmed
using the FRUSDR utility during the system integration process and by System BIOS during
run time.
4.3.2.1
System Configuration Using the FRUSDR Utility
The Field Replaceable Unit and Sensor Data Record Update Utility (FRUSDR utility) is a
program used to write platform-specific configuration data to NVRAM on the server board. It
allows the user to select which supported chassis (Intel
®
or Non-Intel) and platform chassis
configuration is used. Based on the input provided, the FRUSDR writes sensor data specific to
the configuration to NVRAM for the BMC controller to read each time the system is powered on.
4.4
Intel
®
Intelligent Power Node Manager
4.4.1
Overview
Power management deals with requirements to manage processor power consumption and
manage power at the platform level to meet critical business needs.
Node Manager (NM) is a
platform resident technology that enforces power capping and thermal-triggered power capping
policies for the platform. These policies are applied by exploiting subsystem knobs (such as
processor P and T states) that can be used to control power consumption.
NM enables data
center power management by exposing an external interface to management software through
which platform policies can be specified. It also implements specific data center power
management usage models such as power limiting, and thermal monitoring.