HP 6125G HP 6125G & 6125G/XG Blade Switches Layer 3 - IP Services Conf - Page 87

Configuring IPv6 basics, Overview, IPv6 features, Header format simplification, Larger address space

Page 87 highlights

Configuring IPv6 basics Overview Internet Protocol Version 6 (IPv6), also called IP next generation (IPng), was designed by the Internet Engineering Task Force (IETF) as the successor to Internet Protocol version 4 (IPv4). The significant difference between IPv6 and IPv4 is that IPv6 increases the IP address size from 32 bits to 128 bits. IPv6 features Header format simplification IPv6 removes several IPv4 header fields or moves them to the IPv6 extension headers to reduce the length of the basic IPv6 packet header. The basic IPv6 packet header has a fixed length of 40 bytes to simplify IPv6 packet handling and to improve forwarding efficiency. Although IPv6 address size is four times larger than IPv4 address size, the basic IPv6 packet header size is only twice the size of the option-less IPv4 packet header. Figure 43 IPv4 packet header format and basic IPv6 packet header format Larger address space The source and destination IPv6 addresses are 128 bits (or 16 bytes) long. IPv6 can provide 3.4 x 1038 addresses to meet the requirements of hierarchical address division and the allocation of public and private addresses. Hierarchical address structure IPv6 uses hierarchical address structure to speed up route lookups and reduce the IPv6 routing table size through route aggregation. Address autoconfiguration To simplify host configuration, IPv6 supports stateful and stateless address autoconfiguration. 79

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165

79
Configuring IPv6 basics
Overview
Internet Protocol Version 6 (IPv6), also called IP next generation (IPng), was designed by the Internet
Engineering Task Force (IETF) as the successor to Internet Protocol version 4 (IPv4). The significant
difference between IPv6 and IPv4 is that IPv6 increases the IP address size from 32 bits to 128 bits.
IPv6 features
Header format simplification
IPv6 removes several IPv4 header fields or moves them to the IPv6 extension headers to reduce the length
of the basic IPv6 packet header. The basic IPv6 packet header has a fixed length of 40 bytes to simplify
IPv6 packet handling and to improve forwarding efficiency. Although IPv6 address size is four times
larger than IPv4 address size, the basic IPv6 packet header size is only twice the size of the option-less
IPv4 packet header.
Figure 43
IPv4 packet header format and basic IPv6 packet header format
Larger address space
The source and destination IPv6 addresses are 128 bits (or 16 bytes) long. IPv6 can provide 3.4 x 10
38
addresses to meet the requirements of hierarchical address division and the allocation of public and
private addresses.
Hierarchical address structure
IPv6 uses hierarchical address structure to speed up route lookups and reduce the IPv6 routing table size
through route aggregation.
Address autoconfiguration
To simplify host configuration, IPv6 supports stateful and stateless address autoconfiguration.