HP 6125G HP 6125G & 6125G/XG Blade Switches Network Management and Mon - Page 59

Configuring SNMP, Overview, SNMP framework, MIB and view-based MIB access control

Page 59 highlights

Configuring SNMP This chapter provides an overview of the Simple Network Management Protocol (SNMP) and guides you through the configuration procedure. Overview SNMP is an Internet standard protocol widely used for a management station to access and operate the devices on a network, regardless of their vendors, physical characteristics and interconnect technologies. SNMP enables network administrators to read and set the variables on managed devices for state monitoring, troubleshooting, statistics collection, and other management purposes. SNMP framework The SNMP framework comprises the following elements: • SNMP manager-Works on an NMS to monitor and manage the SNMP-capable devices in the network. • SNMP agent-Works on a managed device to receive and handle requests from the NMS, and send traps to the NMS when some events, such as an interface state change, occur. • Management Information Base (MIB)-Specifies the variables (for example, interface status and CPU usage) maintained by the SNMP agent for the SNMP manager to read and set. Figure 21 Relationship between an NMS, agent and MIB MIB and view-based MIB access control A MIB stores variables called "nodes" or "objects" in a tree hierarchy and identifies each node with a unique OID. An OID is a string of numbers that describes the path from the root node to a leaf node. For example, object B in Figure 22 is uniquely identified by the OID {1.2.1.1}. Figure 22 MIB tree 52

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157

52
Configuring SNMP
This chapter provides an overview of the Simple Network Management Protocol (SNMP) and guides you
through the configuration procedure.
Overview
SNMP is an Internet standard protocol widely used for a management station to access and operate the
devices on a network, regardless of their vendors, physical characteristics and interconnect technologies.
SNMP enables network administrators to read and set the variables on managed devices for state
monitoring, troubleshooting, statistics collection, and other management purposes.
SNMP framework
The SNMP framework comprises the following elements:
SNMP manager
—Works on an NMS to monitor and manage the SNMP-capable devices in the
network.
SNMP agent
—Works on a managed device to receive and handle requests from the NMS, and
send traps to the NMS when some events, such as an interface state change, occur.
Management Information Base (MIB)
—Specifies the variables (for example, interface status and
CPU usage) maintained by the SNMP agent for the SNMP manager to read and set.
Figure 21
Relationship between an NMS, agent and MIB
MIB and view-based MIB access control
A MIB stores variables called "nodes" or "objects" in a tree hierarchy and identifies each node with a
unique OID. An OID is a string of numbers that describes the path from the root node to a leaf node. For
example, object B in
Figure 22
is uniquely identified by the OID {1.2.1.1}.
Figure 22
MIB tree