AMD AMD-K6-2/500AFX Data Sheet - Page 28

Internal Architecture, AMD-K6, 2 Processor Data Sheet, EAX, EBX, ECX, EDX, EBP, ESP, ESI

Page 28 highlights

AMD-K6®-2 Processor Data Sheet Preliminary Information 21850J/0-February 2000 Short and long decodes are processed completely within the decoders. Vector decodes are started by the decoders and then completed by fetched sequences from an on-chip ROM. After decoding, the RISC86 operations are delivered to the scheduler for dispatching to the executions units. Scheduler/Instruction Control Unit. The centraliz ed scheduler or buffer is managed by the Instruction Control Unit (ICU). The ICU buffers and manages up to 24 RISC86 operations at a time. This equals from 6 to 12 x86 instructions. This buffer size (24) is perfectly matched to the processor's six-stage RISC86 pipeline and four RISC86-operations decode rate. The scheduler accepts as many as four RISC86 operations at a time from the decoders and retires up to four RISC86 operations per clock cycle. The ICU is capable of simultaneously issuing up to six RISC86 operations at a time to the execution units. This consists of the following types of operations: s Memory load operation s Memory store operation s Complex integer, MMX or 3DNow! register operation s Simple integer, MMX or 3DNow! register operation s Floating-point register operation s Branch condition evaluation Registers. When managing the 24 RISC86 operations, the ICU uses 69 physical registers contained within the RISC86 microarchitecture. 48 of the physical registers are located in a general register file and are grouped as 24 committed or architectural registers plus 24 rename registers. The 24 architectural registers consist of 16 scratch registers and 8 registers that correspond to the x86 general-purpose registers- EAX, EBX, ECX, EDX, EBP, ESP, ESI, and EDI. There is an analogous set of registers specifically for MMX and 3DNow! operations. There are 9 MMX/3DNow! committed or architectural registers plus 12 MMX/3DNow! rename registers. The 9 architectural registers consist of one scratch register and 8 registers that correspond to the MMX registers (mm0-mm7), as shown in Figure 17 on page 29. Branch Logic. The AMD-K6-2 processor is designed with highly sophisticated dynamic branch logic consisting of the following: s Branch history/Prediction table s Branch target cache s Return address stack 8 Internal Architecture Chapter 2

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330

8
Internal Architecture
Chapter 2
AMD-K6
®
-2 Processor Data Sheet
21850J/0—February 2000
Preliminary Information
Short and long decodes are processed completely within the
decoders. Vector decodes are started by the decoders and then
completed by fetched sequences from an on-chip ROM. After
decoding, the RISC86 operations are delivered to the scheduler
for dispatching to the executions units.
Scheduler/Instruction Control Unit.
The centralized scheduler or
buffer is managed by the Instruction Control Unit (ICU). The
ICU buffers and manages up to 24 RISC86 operations at a time.
This equals from 6 to 12 x86 instructions. This buffer size (24) is
perfectly matched to the processor’s six-stage RISC86 pipeline
and four RISC86-operations decode rate. The scheduler accepts
as many as four RISC86 operations at a time from the decoders
and retires up to four RISC86 operations per clock cycle. The
ICU is capable of simultaneously issuing up to six RISC86
operations at a time to the execution units. This consists of the
following types of operations:
Memory load operation
Memory store operation
Complex integer, MMX or 3DNow! register operation
Simple integer, MMX or 3DNow! register operation
Floating-point register operation
Branch condition evaluation
Registers.
When managing the 24 RISC86 operations, the ICU
uses 69 physical registers contained within the RISC86
microarchitecture. 48 of the physical registers are located in a
general register file and are grouped as 24 committed or
architectural registers plus 24 rename registers. The 24
architectural registers consist of 16 scratch registers and 8
registers that correspond to the x86 general-purpose registers—
EAX, EBX, ECX, EDX, EBP, ESP, ESI, and EDI. There is an
analogous set of registers specifically for MMX and 3DNow!
operations. There are 9 MMX/3DNow! committed or
architectural registers plus 12 MMX/3DNow! rename registers.
The 9 architectural registers consist of one scratch register and
8 registers that correspond to the MMX registers (mm0–mm7),
as shown in Figure 17 on page 29.
Branch Logic.
The AMD-K6-2 processor is designed with highly
sophisticated dynamic branch logic consisting of the following:
Branch history/Prediction table
Branch target cache
Return address stack