Intel S2600GZ S2600GZ/GL - Page 36

Publishing System Memory, 2.4.4, Integrated Memory Controller Operating Modes

Page 36 highlights

Intel® Server Board S2600GZ/GL TPS Product Architecture Overview  Mixing of quad ranks DIMMs (RDIMM Raw Cards F and H) in one channel and three DIMMs in other channel (3DPC) on the same CPU socket is not validated. 3.2.4.3 Publishing System Memory  The BIOS displays the "Total Memory" of the system during POST if Quiet Boot is disabled in BIOS setup. This is the total size of memory discovered by the BIOS during POST, and is the sum of the individual sizes of installed DDR3 DIMMs in the system.  The BIOS displays the "Effective Memory" of the system in the BIOS setup. The term Effective Memory refers to the total size of all DDR3 DIMMs that are active (not disabled) and not used as redundant units.  The BIOS provides the total memory of the system in the main page of the BIOS setup. This total is the same as the amount described by the first bullet above.  If Quiet Boot is disabled, the BIOS displays the total system memory on the diagnostic screen at the end of POST. This total is the same as the amount described by the first bullet above.  Note: Some server operating systems do not display the total physical memory installed. What is displayed is the amount of physical memory minus the approximate memory space used by system BIOS components. These BIOS components include, but are not limited to:  ACPI (may vary depending on the number of PCI devices detected in the system)  ACPI NVS table  Processor microcode  Memory Mapped I/O (MMIO)  Manageability Engine (ME)  BIOS flash 3.2.4.4 Integrated Memory Controller Operating Modes 3.2.4.4.1 Independent Channel Mode In non-ECC and x4 SDDC configurations, each channel is running independently (nonlockstep), that is, each cache-line from memory is provided by a channel. To deliver the 64-byte cache-line of data, each channel is bursting eight 8-byte chunks. Back to back data transfer in the same direction and within the same rank can be sent back-to-back without any dead-cycle. The independent channel mode is the recommended method to deliver most efficient power and bandwidth as long as the x8 SDDC is not required. 3.2.4.4.2 Lockstep Channel Mode In lockstep channel mode the cache-line is split across channels. This is done to support Single Device Data Correction (SDDC) for DRAM devices with 8-bit wide data ports. Also, the same address is used on both channels, such that an address error on any channel is detectable by bad ECC. The iMC module always accumulates 32-bytes before forwarding data so there is no latency benefit for disabling ECC. Lockstep channels must be populated identically. That is, each DIMM in one channel must have a corresponding DIMM of identical organization (number ranks, number banks, number rows, number columns). DIMMs may be of different speed grades, but the iMC module will be configured to operate all DIMMs according to the slowest parameters present by the Memory Reference Code (MRC). Revision 1.1 23 Intel order number G24881-004

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264

Intel® Server Board S2600GZ/GL TPS
Product Architecture Overview
Revision 1.1
Intel order number G24881-004
23
Mixing of quad ranks DIMMs (RDIMM Raw Cards F and H) in one channel and three
DIMMs in other channel (3DPC) on the same CPU socket is not validated.
3.2.4.3
Publishing System Memory
The BIOS displays the “Total Memory” of the system during POST if
Quiet Boot is
disabled in BIOS setup. This is the total size of memory discovered by the BIOS during
POST, and is the sum of the individual sizes of installed DDR3 DIMMs in the system.
The BIOS displays the “Effective Memory” of the system in the BIOS
setup. The term
Effective Memory
refers to the total size of all DDR3 DIMMs that are active (not
disabled) and not used as redundant units.
The BIOS provides the total memory of the system in the main page of the BIOS setup.
This total is the same as the amount described by the first bullet above.
If Quiet Boot is disabled, the BIOS displays the total system memory on the diagnostic
screen at the end of POST. This total is the same as the amount described by the first
bullet above.
Note
:
Some server operating systems do not display the total physical memory installed. What
is displayed is the amount of physical memory minus the approximate memory space used by
system BIOS components. These BIOS components include, but are not limited to:
ACPI (may vary depending on the number of PCI devices detected in the system)
ACPI NVS table
Processor microcode
Memory Mapped I/O (MMIO)
Manageability Engine (ME)
BIOS flash
3.2.4.4
Integrated Memory Controller Operating Modes
3.2.4.4.1
Independent Channel Mode
In non-ECC and x4 SDDC configurations, each channel is running independently (nonlock-
step), that is, each cache-line from memory is provided by a channel. To deliver the 64-byte
cache-line of data, each channel is bursting eight 8-byte chunks. Back to back data transfer in
the same direction and within the same rank can be sent back-to-back without any dead-cycle.
The independent channel mode is the recommended method to deliver most efficient power and
bandwidth as long as the x8 SDDC is not required.
3.2.4.4.2
Lockstep Channel Mode
In lockstep channel mode the cache-line is split across channels. This is done to support Single
Device Data Correction (SDDC) for DRAM devices with 8-bit wide data ports. Also, the same
address is used on both channels, such that an address error on any channel is detectable by
bad ECC. The iMC module always accumulates 32-bytes before forwarding data so there is no
latency benefit for disabling ECC.
Lockstep channels must be populated identically. That is, each DIMM in one channel must
have a corresponding DIMM of identical organization (number ranks, number banks, number
rows, number columns). DIMMs may be of different speed grades, but the iMC module will be
configured to operate all DIMMs according to the slowest parameters present by the Memory
Reference Code (MRC).