Intel S2600GZ S2600GZ/GL - Page 71

Thermal and Acoustic Management, Thermal Sensor Input to Fan Speed Control - technical product specification

Page 71 highlights

Platform Management Functional Overview Intel® Server Board S2600GZ/GL TPS A fan domain has three states: sleep, nominal, and boost. The sleep and boost states have fixed (but configurable through OEM SDRs) fan speeds associated with them. The nominal state has a variable speed determined by the fan domain policy. An OEM SDR record is used to configure the fan domain policy. System fan speeds are controlled through pulse width modulation (PWM) signals, which are driven separately for each domain by integrated PWM hardware. Fan speed is changed by adjusting the duty cycle, which is the percentage of time the signal is driven high in each pulse 6.9.1 Thermal and Acoustic Management This feature refers to enhanced fan management to keep the system optimally cooled while reducing the amount of noise generated by the system fans. Aggressive acoustics standards might require a trade-off between fan speed and system performance parameters that contribute to the cooling requirements, primarily memory bandwidth. The BIOS, BMC, and SDRs work together to provide control over how this trade-off is determined. This capability requires the BMC to access temperature sensors on the individual memory DIMMs. Additionally, closed-loop thermal throttling is only supported with buffered DIMMs. In order to maintain comprehensive thermal protection, deliver the best system acoustics, and fan power efficiency, an intelligent Fan Speed Control (FSC) and thermal management technology (mechanism) is used. Options in BIOS Setup (BIOS > Advanced > System Acoustic and Performance Configuration) allow for parameter adjustments based on the actual system configuration and usage. Refer to System Acoustic and Performance Configuration for a description of each setting.  Set Throttling Mode  Altitude  Set Fan Profile  Fan PWM Offset  Quiet Fan Idle Mode Note: The above features may or may not be in effective depends on the actual thermal characters of a specific system. Refer to Intel® Server System R1000GZ/GL product family Technical Product Specification and Intel® Server System R2000GZ/GL product family Technical Product Specification for system thermal and acoustic management. 6.9.2 Thermal Sensor Input to Fan Speed Control The BMC uses various IPMI sensors as input to the fan speed control. Some of the sensors are IPMI models of actual physical sensors whereas some are "virtual" sensors whose values are derived from physical sensors using calculations and/or tabular information. The following IPMI thermal sensors are used as input to the fan speed control:  Front Panel Temperature Sensor1  Baseboard Temperature Sensor2  CPU Margin Sensors3,5,6  DIMM Thermal Margin Sensors3,5  Exit Air Temperature Sensor1, 4, 8  PCH Temperature Sensor4,6 58 Revision 1.1 Intel order number G24881-004

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264

Platform Management Functional Overview
Intel® Server Board S2600GZ/GL TPS
Revision 1.1
Intel order number G24881-004
58
A fan domain has three states: sleep, nominal, and boost. The sleep and boost states have
fixed (but configurable through OEM SDRs) fan speeds associated with them. The nominal
state has a variable speed determined by the fan domain policy. An OEM SDR record is used to
configure the fan domain policy.
System fan speeds are controlled through pulse width modulation (PWM) signals, which are
driven separately for each domain by integrated PWM hardware. Fan speed is changed by
adjusting the duty cycle, which is the percentage of time the signal is driven high in each pulse
6.9.1
Thermal and Acoustic Management
This feature refers to enhanced fan management to keep the system optimally cooled while
reducing the amount of noise generated by the system fans. Aggressive acoustics standards
might require a trade-off between fan speed and system performance parameters that
contribute to the cooling requirements, primarily memory bandwidth. The BIOS, BMC, and
SDRs work together to provide control over how this trade-off is determined.
This capability requires the BMC to access temperature sensors on the individual memory
DIMMs. Additionally, closed-loop thermal throttling is only supported with buffered DIMMs.
In order to maintain comprehensive thermal protection, deliver the best system acoustics, and
fan power efficiency, an intelligent Fan Speed Control (FSC) and thermal management
technology (mechanism) is used. Options in <F2> BIOS Setup (
BIOS
>
Advanced
>
System
Acoustic and Performance Configuration)
allow for parameter adjustments based on the
actual system configuration and usage. Refer to System Acoustic and Performance
Configuration for a description of each setting.
Set Throttling Mode
Altitude
Set Fan Profile
Fan PWM Offset
Quiet Fan Idle Mode
Note
: The above features may or may not be in effective depends on the actual thermal
characters of a specific system. Refer to Intel
®
Server System R1000GZ/GL product family
Technical Product Specification and Intel
®
Server System R2000GZ/GL product family Technical
Product Specification for system thermal and acoustic management.
6.9.2
Thermal Sensor Input to Fan Speed Control
The BMC uses various IPMI sensors as input to the fan speed control. Some of the sensors are
IPMI models of actual physical sensors whereas some are “virtual” sensors whose values are
derived from physical sensors using calculations and/or tabular information.
The following IPMI thermal sensors are used as input to the fan speed control:
Front Panel Temperature Sensor
1
Baseboard Temperature Sensor
2
CPU Margin Sensors
3,5,6
DIMM Thermal Margin Sensors
3,5
Exit Air Temperature Sensor
1, 4, 8
PCH Temperature Sensor
4,6