Intel S2600CP Technical Product Specification - Page 152

mV, 100mV, 350mV pk-pk

Page 152 highlights

Intel® Server System P4000CP Power System Options Intel® Server Board S2600CP and Server System P4000CP TPS 13.2.5.6 Capacitive Loading The power supply is stable and meets all requirements with the following capacitive loading ranges. Table 82. Capacitive Loading Conditions Output +3.3V +5V +12V -12V +5VSB Min 250 400 500 1 20 Max 5000 5000 8000 350 350 Units F F F F F 13.2.5.7 Grounding The output ground of the pins of the power supply provides the output power return path. The output connector ground pins are connected to the safety ground (power supply enclosure). This grounding is well designed to ensure passing the max allowed Common Mode Noise levels. The power supply is provided with a reliable protective earth ground. All secondary circuits are connected to protective earth ground. Resistance of the ground returns to chassis does not exceed 1.0 m. This path may be used to carry DC current. 13.2.5.8 Residual Voltage Immunity in Standby mode The power supply is immune to any residual voltage placed on its outputs (Typically a leakage voltage through the system from standby output) up to 500mV. There is neither additional heat generated, nor stressing of any internal components with this voltage applied to any individual or all outputs simultaneously. It also does not trip the protection circuits during turn on. The residual voltage at the power supply outputs for no load condition does not exceed 100mV when AC voltage is applied and the PSON# signal is de-asserted. 13.2.5.9 Common Mode Noise The Common Mode noise on any output does not exceed 350mV pk-pk over the frequency band of 10Hz to 20MHz. The measurement is made across a 100Ω resistor between each of DC outputs, including ground at the DC power connector and chassis ground (power subsystem enclosure). The test set-up shall use a FET probe such as Tektronix model P6046 or equivalent. 13.2.5.10 Ripple/Noise The maximum allowed ripple/noise output of the power supply is defined in below table 20. This is measured over a bandwidth of 10Hz to 20MHz at the power supply output connectors. A 10F tantalum capacitor in parallel with a 0.1F ceramic capacitor is placed at the point of measurement. 136 Revision 1.2 Intel order number G26942-003

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228

Intel
®
Server System P4000CP Power System Options
Intel
®
Server Board S2600CP and Server System P4000CP TPS
Revision 1.2
Intel order number G26942-003
136
13.2.5.6
Capacitive Loading
The power supply is stable and meets all requirements with the following capacitive loading
ranges.
Table 82. Capacitive Loading Conditions
Output
Min
Max
Units
+3.3V
250
5000
F
+5V
400
5000
F
+12V
500
8000
F
-12V
1
350
F
+5VSB
20
350
F
13.2.5.7
Grounding
The output ground of the pins of the power supply provides the output power return path. The
output connector ground pins are connected to the safety ground (power supply enclosure).
This grounding is well designed to ensure passing the max allowed Common Mode Noise levels.
The power supply is provided with a reliable protective earth ground. All secondary circuits are
connected to protective earth ground. Resistance of the ground returns to chassis does not
exceed 1.0 m
. This path may be used to carry DC current.
13.2.5.8
Residual Voltage Immunity in Standby mode
The power supply is immune to any residual voltage placed on its outputs (Typically a leakage
voltage through the system from standby output) up to
500mV
. There is neither additional heat
generated, nor stressing of any internal components with this voltage applied to any individual
or all outputs simultaneously. It also does not trip the protection circuits during turn on.
The residual voltage at the power supply outputs for no load condition does not exceed
100mV
when AC voltage is applied and the PSON# signal is de-asserted.
13.2.5.9
Common Mode Noise
The Common Mode noise on any output does not exceed
350mV pk-pk
over the frequency
band of 10Hz to 20MHz.
The measurement is made across a 100
resistor between each of DC outputs, including
ground at the DC power connector and chassis ground (power subsystem enclosure).
The test set-up shall use a FET probe such as Tektronix model P6046 or equivalent.
13.2.5.10
Ripple/Noise
The maximum allowed ripple/noise output of the power supply is defined in below table 20. This
is measured over a bandwidth of 10Hz to 20MHz at the power supply output connectors. A
10
F tantalum capacitor in parallel with a 0.1
F ceramic capacitor is placed at the point of
measurement.