HP MSA 1040 HP MSA 1040 SMU Reference Guide (762784-001, March 2014) - Page 145

SNMP reference, Supported SNMP versions, Standard MIB-II behavior, Enterprise traps - product number

Page 145 highlights

A SNMP reference This appendix describes the Simple Network Management Protocol (SNMP) capabilities that MSA 1040 storage systems support. This includes standard MIB-II, the FibreAlliance SNMP Management Information Base (MIB) version 2.2 objects, and enterprise traps. MSA 1040 storage systems can report their status through SNMP. SNMP provides basic discovery using MIB-II, more detailed status with the FA MIB 2.2, and asynchronous notification using enterprise traps. SNMP is a widely used network monitoring and control protocol. It is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission Control Protocol/Internet Protocol (TCP/IP) protocol suite. SNMP enables network administrators to manage network performance, find and solve network problems, and plan for network growth. Data is passed from SNMP agents reporting activity on each network device to the workstation console used to oversee the network. The agents return information contained in a Management Information Base (MIB), which is a data structure that defines what is obtainable from the device and what can be controlled (turned on and off, etc.). Supported SNMP versions MSA 1040 storage systems allow use of SNMPv2c or SNMPv3. SNMPv2c uses a community-based security scheme. For improved security, SNMPv3 provides authentication of the network management system that is accessing the storage system, and encryption of the information transferred between the storage system and the network management system. When SNMPv3 is disabled, SNMPv2c will be active. When SNMPv3 is enabled, SNMPv2c will only have access to the MIB-II common system information; this allows device discovery. Whether you use SNMPv2c or v3, note that the only SNMP-writable information is the system contact, name, and location. System data, configuration, and state cannot be changed via SNMP. Standard MIB-II behavior MIB-II is implemented to support basic discovery and status. An SNMP object identifier (OID) is a number assigned to devices in a network for identification purposes. OID numbering is hierarchical. Using the IETF notation of digits and dots resembling very long IP addresses, various registries such as ANSI assign high-level numbers to vendors and organizations. They, in turn, append digits to the number to identify individual devices or software processes. The system object identifier (sysObjectID) is based on the vendor name followed by ".2." and the identifier for the particular product model. For example, the object identifier for MSA 1040 storage systems is 1.3.6.1.4.1.11.2.51, where 51 is assigned for hpMSA. System uptime is an offset from the first time this object is read. In the system group, all objects can be read. The contact, name, and location objects can be set. In the interfaces group, an internal PPP interface is documented, but it is not reachable from external to the device. The address translation (at) and external gateway protocol (egp) groups are not supported. Enterprise traps Traps can be generated in response to events occurring in the storage system. These events can be selected by severity and by individual event type. A maximum of three SNMP trap destinations can be configured by IP address. Enterprise event severities are informational, minor, major, and critical. There is a different trap type for each of these severities. The trap format is represented by the HP enterprise traps MIB, msa2000traps.mib. Information included is the event ID, the event code type, and a text description generated from the internal event. Equivalent information can also be sent using email or popup alerts to users who are logged in to SMU. The text of the trap MIB is included at the end of this appendix. Supported SNMP versions 145

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190

Supported SNMP versions
145
A
SNMP reference
This appendix describes the Simple Network Management Protocol (SNMP) capabilities that MSA 1040 storage
systems support. This includes standard MIB-II, the FibreAlliance SNMP Management Information Base (MIB) version
2.2 objects, and enterprise traps.
MSA 1040 storage systems can report their status through SNMP. SNMP provides basic discovery using MIB-II,
more detailed status with the FA MIB 2.2, and asynchronous notification using enterprise traps.
SNMP is a widely used network monitoring and control protocol. It is an application layer protocol that facilitates the
exchange of management information between network devices. It is part of the Transmission Control
Protocol/Internet Protocol (TCP/IP) protocol suite.
SNMP enables network administrators to manage network performance, find and solve network problems, and plan
for network growth. Data is passed from SNMP agents reporting activity on each network device to the workstation
console used to oversee the network. The agents return information contained in a Management Information Base
(MIB), which is a data structure that defines what is obtainable from the device and what can be controlled (turned
on and off, etc.).
Supported SNMP versions
MSA 1040 storage systems allow use of SNMPv2c or SNMPv3. SNMPv2c uses a community-based security
scheme. For improved security, SNMPv3 provides authentication of the network management system that is
accessing the storage system, and encryption of the information transferred between the storage system and the
network management system.
When SNMPv3 is disabled, SNMPv2c will be active. When SNMPv3 is enabled, SNMPv2c will only have access to
the MIB-II common system information; this allows device discovery.
Whether you use SNMPv2c or v3, note that the only SNMP-writable information is the system contact, name, and
location. System data, configuration, and state cannot be changed via SNMP.
Standard MIB-II behavior
MIB-II is implemented to support basic discovery and status.
An SNMP object identifier (OID) is a number assigned to devices in a network for identification purposes. OID
numbering is hierarchical. Using the IETF notation of digits and dots resembling very long IP addresses, various
registries such as ANSI assign high-level numbers to vendors and organizations. They, in turn, append digits to the
number to identify individual devices or software processes.
The system object identifier (
sysObjectID
) is based on the vendor name followed by “.2.” and the identifier for the
particular product model. For example, the object identifier for MSA 1040 storage systems is 1.3.6.1.4.1.11.2.51,
where 51 is assigned for hpMSA. System uptime is an offset from the first time this object is read.
In the system group, all objects can be read. The contact, name, and location objects can be set.
In the interfaces group, an internal PPP interface is documented, but it is not reachable from external to the device.
The address translation (at) and external gateway protocol (egp) groups are not supported.
Enterprise traps
Traps can be generated in response to events occurring in the storage system. These events can be selected by
severity and by individual event type. A maximum of three SNMP trap destinations can be configured by IP address.
Enterprise event severities are informational, minor, major, and critical. There is a different trap type for each of these
severities. The trap format is represented by the HP enterprise traps MIB,
msa2000traps.mib
. Information
included is the event ID, the event code type, and a text description generated from the internal event. Equivalent
information can also be sent using email or popup alerts to users who are logged in to SMU.
The text of the trap MIB is included at the end of this appendix.