Intel VC820 Design Guide - Page 65

VREF Generation for AGP 2.0 (2X and 4X),

Page 65 highlights

Layout/Routing Guidelines Figure 2-31. AGP VDDQ Generation Example Circuit +12V O +3.3V O C2 47 uF VDDQ O R1 1 KΩ C1 1 uF TYPEDET# U1 LT1575 1 SHDN 2 VIN 3 GND 4 FB 5 IPOS 6 INEG GATE 7 8 COMP C4 10 pF C5 47 uF R5 7.5 KΩ 5 Ω C3 R2 220 uF R3 301 Ω R4 1.21 KΩ agp vddq generation vsd 2.7.8 VREF Generation for AGP 2.0 (2X and 4X) VREF generation for AGP 2.0 will be different depending on the AGP card type used. The 3.3V AGP cards generate VREF locally (i.e., they have a resistor divider on the card that divides VDDQ down to VREF) as shown in Figure 2-32. To account for potential differences between VDDQ and GND at the MCH and graphics controller, 1.5V cards use source generated VREF (i.e., the VREF signal is generated at the graphics controller and sent to the MCH, and another VREF is generated at the MCH and sent to the graphics controller). Refer to Figure 2-32. Both the graphics controller and the MCH are required to generate VREF and distribute it through the connector (1.5V add-in cards only). There are two pins defined on the AGP 2.0 universal connector to allow this VREF passing. These pins are: • VREFGC - Vref from the graphics controller to the chipset • VREFCG - Vref from the chipset to the graphics controller To preserve the common mode relationship between the VREF and data signals, it is important the routing of the two Vref signals must be matched in length to the strobe lines within 0.5 inches on the motherboard and within 0.25 inches on the add-in card. The voltage divider networks consists of AC and DC elements as shown in the figure. The VREF divider network should be placed as close to the AGP interface as is practical to get the benefit of the common mode power supply effects. However, the trace spacing around the VREF signals must be a minimum of 25 mils to reduce cross-talk and maintain signal integrity. Intel®820 Chipset Design Guide 2-39

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242

Intel
®
820 Chipset
Design Guide
2-39
Layout/Routing Guidelines
2.7.8
V
REF
Generation for AGP 2.0 (2X and 4X)
V
REF
generation for AGP 2.0 will be different depending on the AGP card type used.
The 3.3V
AGP cards generate V
REF
locally (i.e., they have a resistor divider on the card that divides VDDQ
down to V
REF
) as shown in
Figure 2-32
. To account for potential differences between VDDQ and
GND at the MCH and graphics controller, 1.5V cards use source generated V
REF
(i.e., the V
REF
signal is generated at the graphics controller and sent to the MCH, and another V
REF
is generated at
the MCH and sent to the graphics controller). Refer to
Figure 2-32
.
Both the graphics controller and the MCH are required to generate V
REF
and distribute it through
the connector (1.5V add-in cards only). There are two pins defined on the AGP 2.0 universal
connector to allow this V
REF
passing. These pins are:
V
REF
GC
- Vref from the graphics controller to the chipset
V
REF
CG
- Vref from the chipset to the graphics controller
To preserve the common mode relationship between the V
REF
and data signals, it is important the
routing of the two Vref signals must be matched in length to the strobe lines within 0.5 inches on
the motherboard and within 0.25 inches on the add-in card.
The voltage divider networks consists of AC and DC elements as shown in the figure.
The V
REF
divider network should be placed as close to the AGP interface as is practical to get the
benefit of the common mode power supply effects.
However, the trace spacing around the V
REF
signals must be a minimum of 25 mils to reduce cross-talk and maintain signal integrity.
Figure 2-31. AGP VDDQ Generation Example Circuit
SHDN
IPOS
VIN
INEG
GND
GATE
FB
COMP
C1
1 K
47 uF
10 pF
7.5 K
C2
5
R3
R4
C3
O
O
O
+12V
+3.3V
VDDQ
R1
1 uF
TYPEDET#
U1
LT1575
1
2
3
4
5
6
7
8
C5
R5
C4
R2
301
1.21 K
47 uF
220 uF
agp vddq generation vsd